REAL-TIME 3D FINITE-DIFFERENCE TIME-DOMAIN SIMULATION OF LOW- AND MID-FREQUENCY ROOM ACOUSTICS

Modern graphics processing units (GPUs) are massively parallel computing environments. They make it possible to run certain tasks orders of magnitude faster than what is possible with a central processing unit (CPU). One such case is simulation of room acoustics with wave-based modeling techniques. In this paper we show that it is possible to run room acoustic simulations with a finite-difference time-domain model in real-time for a modest-size geometry up to 7kHz sampling rate. For a 10% maximum dispersion error limit this means that our system can be used for realtime auralization up to 1.5kHz. In addition, the system is able to handle several simultaneous sound sources and a moving listener with no additional cost. The results of this study include performance comparison of different schemes showing that the interpolated wideband scheme is able to handle in real-time 1.4 times the bandwidth of the standard rectilinear scheme with the same maximum dispersion error.

[1]  Martin Rumpf,et al.  Using Graphics Cards for Quantized FEM Computations , 2001, VIIP.

[2]  Tapio Lokki,et al.  The room acoustic rendering equation. , 2007, The Journal of the Acoustical Society of America.

[3]  Naga K. Govindaraju,et al.  High performance discrete Fourier transforms on graphics processors , 2008, HiPC 2008.

[4]  Vesa Välimäki,et al.  Interpolated rectangular 3-D digital waveguide mesh algorithms with frequency warping , 2003, IEEE Trans. Speech Audio Process..

[5]  T. Funkhouser,et al.  Integration of edge-diffraction calculations and geometrical-acoustics modeling , 2005 .

[6]  Krzysztof Marasek,et al.  Computation of Room Acoustics using Programmable Video Hardware , 2004, ICCVG.

[7]  Tapio Lokki,et al.  Frequency domain acoustic radiance transfer for real-time auralization , 2009 .

[8]  Maic Masuch,et al.  RAY ACOUSTICS USING COMPUTER GRAPHICS TECHNOLOGY , 2007 .

[9]  T. Takahashi,et al.  GPU‐accelerated boundary element method for Helmholtz' equation in three dimensions , 2009 .

[10]  Sylvain Lefebvre,et al.  Instant Sound Scattering , 2007, Rendering Techniques.

[11]  Digital Audio Resampling Home Page , 2002 .

[12]  Vesa Välimäki,et al.  Real-Time Additive Synthesis with One Million Sinusoids Using a GPU , 2010 .

[13]  Rahul Narain,et al.  Efficient and accurate sound propagation using adaptive rectangular decomposition. , 2009, IEEE transactions on visualization and computer graphics.

[14]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[15]  Pedro Novo,et al.  IKA-SIM: A System to Generate Auditory Virtual Environments , 2004 .

[16]  Maic Masuch,et al.  Waveguide-based Room Acoustics through Graphics Hardware , 2006, ICMC.

[17]  Dinesh Manocha,et al.  AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  S.A. Van Duyne,et al.  The tetrahedral digital waveguide mesh , 1995, Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics.

[19]  Tapio Takala,et al.  Waveguide Mesh Method for Low-Frequency Simulation of Room Acoustics , 1995 .

[20]  Ulf R. Kristiansen,et al.  Computational Modelling and Simulation of Acoutic Spaces , 2002 .

[21]  Damian Murphy,et al.  HYBRID ROOM IMPULSE RESPONSE SYNTHESIS IN DIGITAL WAVEGUIDE MESH BASED ROOM ACOUSTICS SIMULATION , 2008 .

[22]  A. Krokstad,et al.  Calculating the acoustical room response by the use of a ray tracing technique , 1968 .

[23]  David M. Howard,et al.  A PARALLEL 3D DIGITAL WAVEGUIDE MESH MODEL WITH TETRAHEDRAL TOPOLOGY FOR ROOM ACOUSTIC SIMULATION , 2000 .

[24]  D. Botteldooren Finite‐difference time‐domain simulation of low‐frequency room acoustic problems , 1995 .

[25]  Dinesh Manocha,et al.  FAST EDGE-DIFFRACTION FOR SOUND PROPAGATION IN COMPLEX VIRTUAL ENVIRONMENTS , 2009 .

[26]  Paulo Dias,et al.  Finite Difference Room Acoustic Modelling on a General Purpose Graphics Processing Unit , 2010 .

[27]  Jont B. Allen,et al.  Image method for efficiently simulating small‐room acoustics , 1976 .

[28]  Dinesh Manocha,et al.  RESound: interactive sound rendering for dynamic virtual environments , 2009, ACM Multimedia.

[29]  Maarten van Walstijn,et al.  Modelling Frequency-Dependent Boundaries as Digital Impedance Filters in FDTD Room Acoustic Simulations , 2008 .

[30]  M. van Walstijn,et al.  On the numerical solution of the 2d wave equation with compact fdtd schemes , 2008 .

[31]  N. Tsingos USING PROGRAMMABLE GRAPHICS HARDWARE FOR AURALIZATION , 2009 .

[32]  Tapio Takala,et al.  Simulation of Room Acoustics with a 3-D Finite Difference Mesh , 1994, ICMC.

[33]  Maarten van Walstijn,et al.  Room Acoustics Simulation Using 3-D Compact Explicit FDTD Schemes , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[34]  Tapio Lokki,et al.  Creating Interactive Virtual Acoustic Environments , 1999 .