HELPR: HYBRID EVOLUTIONARY LEARNING FOR PATTERN RECOGNITION

Abstract : The availability of inexpensive sensors coupled with the rise of the internet has led to a rapid expansion in the amount of data available for analysis. Although there are a myriad of uses for this data, one of the most common applications is pattern recognition. The traditional approach to creating pattern recognition systems is human intensive requiring experts with training in pattern recognition to collaborate with experts who have knowledge of the problem domain to develop a custom recognition system for a specific problem. In contrast, the HELPR software architecture has focused on the design and implementation of software tools and techniques that use evolutionary computation to synthesize target systems from raw data, thereby reducing the personnel requirements and time needed to deploy new recognition systems. Result produce by ATR systems evolved using HELPR are reported for a variety of tasks involving HRR, SAR, E3D, and image processing.

[1]  Louis A. Tamburino,et al.  Evolving pattern recognition systems , 2002, IEEE Trans. Evol. Comput..

[2]  Louis A. Tamburino,et al.  Hybrid evolutionary learning for synthesizing multi-class pattern recognition systems , 2003, Appl. Soft Comput..

[3]  Shu-Yuen Hwang,et al.  State-space search for high-level control of machine vision , 1992 .

[4]  Brian V. Funt,et al.  Learning Color Constancy , 1996, CIC.

[5]  Louis A. Tamburino,et al.  Performance-driven autonomous design of pattern-recognition systems , 1992, Appl. Artif. Intell..

[6]  Mateen M. Rizki,et al.  Automatic generation of morphological sequences , 1992, Optics & Photonics.

[7]  L.A. Tamburino,et al.  Automatic generation of binary feature detectors , 1989, IEEE Aerospace and Electronic Systems Magazine.

[8]  Mateen M. Rizki,et al.  Target classification using morphological features , 2004, SPIE Defense + Commercial Sensing.

[9]  Mateen M. Rizki,et al.  Adaptive search for morphological feature detectors , 1990, Optics & Photonics.

[10]  Louis A. Tamburino,et al.  Generating Pattern- Recognition Systems Using Evolutionary Learning , 1995, IEEE Expert.

[11]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[12]  Mateen M. Rizki,et al.  Computational resource management in supervised learning systems , 1989, Proceedings of the IEEE National Aerospace and Electronics Conference.

[13]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[14]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[15]  David G. Stork,et al.  Pattern Classification , 1973 .

[16]  Brian V. Funt,et al.  A comparison of computational color constancy Algorithms. II. Experiments with image data , 2002, IEEE Trans. Image Process..

[17]  Mateen M. Rizki,et al.  Applications of learning strategies to pattern recognition , 1991 .

[18]  Louis A. Tamburino,et al.  E-Net: Evolutionary neural network synthesis , 2002, Neurocomputing.

[19]  Louis A. Tamburino,et al.  Biological Evolution as a Paradigm for Performance Driven Design Processes , 1989, Great Lakes Computer Science Conference.

[20]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[21]  Louis A. Tamburino,et al.  Resource Allocation for a Hybrid Evolutionary Learning System Used for Pattern Recognition , 1996, Evolutionary Programming.

[22]  Jacques G. Verly,et al.  Adaptive mathematical morphology for range imagery , 1993, IEEE Trans. Image Process..

[23]  Mateen M. Rizki,et al.  Applications of hybrid learning to automated system design , 1990, Proceedings [1990]. AI, Simulation and Planning in High Autonomy Systems.

[24]  L. J. De Haas Automatic programming of machine vision systems , 1987, IJCAI 1987.

[25]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[26]  Mateen M. Rizki,et al.  The Multi-Tiered Tournament Selection for evolutionary neural network synthesis , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.

[27]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  D. Ackley Stochastic iterated genetic hillclimbing , 1987 .

[29]  E. Hansen Numerical Optimization of Computer Models (Hans-Paul Schwefel) , 1983 .

[30]  Fred Stentiford,et al.  Automatic Feature Design for Optical Character Recognition Using an Evolutionary Search Procedure , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[32]  Louis A. Tamburino,et al.  An evolutionary learning system for synthesizing complex morphological filters , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[34]  Laurent Siklóssy On the evolution of artificial intelligence , 1970, Inf. Sci..

[35]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[36]  A. J. Katz,et al.  Generating Image Filters for Target Recognition by Genetic Learning , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  M Schmitt,et al.  Mathematical morphology and artificial intelligence: an automatic programming system , 1989 .

[38]  Robert M. Haralick,et al.  Toward the automatic generation of mathematical morphology procedures using predicate logic , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[39]  Louis A. Tamburino,et al.  Evolutionary Optimization of Gaussian Windowing Functions for Data Preprocessing , 2003, Int. J. Artif. Intell. Tools.

[40]  Edward R. Dougherty,et al.  An introduction to morphological image processing , 1992 .

[41]  Dennis Gabor,et al.  Theory of communication , 1946 .

[42]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[43]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[44]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[45]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[46]  Graham D. Finlayson,et al.  Color in Perspective , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[48]  Louis A. Tamburino,et al.  Mutating real-valued vectors using angular displacement , 2003, Int. J. Artif. Intell. Tools.

[49]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[50]  Peter Seitz,et al.  Minimum class entropy: A maximum information approach to layered networks , 1989, Neural Networks.

[51]  Andrew Mcgilvary Gillies,et al.  Machine Learning Procedures for Generating Image Domain Feature Detectors , 1985 .

[52]  Jaakko Astola,et al.  Soft morphological filters , 1991, Optics & Photonics.

[53]  Robert C. Vogt,et al.  Automatic Generation of Morphological Set Recognition Algorithms , 1989, Springer Series in Perception Engineering.

[54]  G. Finlayson,et al.  Coefficient color constancy , 1995 .

[55]  Xin Yao,et al.  Evolutionary Optimization , 2002 .

[56]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[57]  L.A. Tamburino,et al.  Automated feature detection using evolutionary learning processes , 1989, Proceedings of the IEEE National Aerospace and Electronics Conference.

[58]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[59]  Takashi Matsuyama Expert systems for image processing: Knowledge-based composition of image analysis processes , 1989, Comput. Vis. Graph. Image Process..

[60]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .