The maximally entangled set of 4-qubit states

Entanglement is a resource to overcome the natural restriction of operations used for state manipulation to Local Operations assisted by Classical Communication (LOCC). Hence, a bipartite maximally entangled state is a state which can be transformed deterministically into any other state via LOCC. In the multipartite setting no such state exists. There, rather a whole set, the Maximally Entangled Set of states (MES), which we recently introduced, is required. This set has on the one hand the property that any state outside of this set can be obtained via LOCC from one of the states within the set and on the other hand, no state in the set can be obtained from any other state via LOCC. Recently, we studied LOCC transformations among pure multipartite states and derived the MES for three and generic four qubit states. Here, we consider the non-generic four qubit states and analyze their properties regarding local transformations. As already the most coarse grained classification, due to Stochastic LOCC (SLO...

[1]  N. Wallach,et al.  Necessary and sufficient conditions for local manipulation of multipartite pure quantum states , 2011, 1103.5096.

[2]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[3]  Raymond Laflamme,et al.  Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction , 2003, Quantum Inf. Process..

[4]  Eric Chitambar,et al.  Local quantum transformations requiring infinite rounds of classical communication. , 2011, Physical review letters.

[5]  B. Kraus Local unitary equivalence and entanglement of multipartite pure states , 2010, 1005.5295.

[6]  Giorgio Parisi,et al.  Maximally multipartite entangled states , 2007, 0710.2868.

[7]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[8]  Gilad Gour,et al.  qu an tph ] 1 4 Ju l 2 01 0 All Maximally Entangled Four Qubits States , 2010 .

[9]  Oliver Rudolph The uniqueness theorem for entanglement measures , 2001, quant-ph/0105104.

[10]  S. Turgut,et al.  Deterministic transformations of multipartite entangled states with tensor rank 2 , 2009, 0907.3960.

[11]  B. Kraus,et al.  Remote entanglement preparation , 2013, 1302.2471.

[12]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[13]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[14]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[15]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[16]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[17]  S. Turgut,et al.  Transformations of W-type entangled states , 2010, 1003.2118.

[18]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[19]  B. D. Craven,et al.  Complex symmetric matrices , 1969, Journal of the Australian Mathematical Society.

[20]  C. Spee,et al.  Maximally entangled set of tripartite qutrit states and pure state separable transformations which are not possible via local operations and classical communication , 2016 .

[21]  B. Kraus,et al.  Operational Multipartite Entanglement Measures. , 2015, Physical review letters.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[24]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[25]  N. Wallach,et al.  Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.

[26]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[27]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[28]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[29]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[30]  B. Kraus,et al.  Source and accessible entanglement of few-body systems , 2015, 1508.02524.

[31]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[32]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[33]  Hoi-Kwong Lo,et al.  Increasing entanglement monotones by separable operations. , 2012, Physical review letters.

[34]  J I de Vicente,et al.  Maximally entangled set of multipartite quantum states. , 2013, Physical review letters.

[35]  Runyao Duan,et al.  Nonlocal entanglement transformations achievable by separable operations. , 2008, Physical review letters.

[36]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[37]  H. Tajima Deterministic LOCC transformation of three-qubit pure states and entanglement transfer , 2010, 1012.1676.

[38]  B. M. Fulk MATH , 1992 .