Identical twins carry a persistent epigenetic signature of early genome programming

[1]  Hannes P. Eggertsson,et al.  Differences between germline genomes of monozygotic twins , 2021, Nature Genetics.

[2]  E. Lopriore,et al.  Twin-Singleton Comparisons Across Multiple Domains of Life , 2021 .

[3]  Jeffrey J. Beck,et al.  Biology and Genetics of Dizygotic and Monozygotic Twinning , 2021, Twin and Higher-order Pregnancies.

[4]  Annelot M. Dekker,et al.  Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies , 2020, NAR genomics and bioinformatics.

[5]  Annelot M. Dekker,et al.  Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation , 2021, Nature Genetics.

[6]  Pashupati P. Mishra,et al.  DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan , 2020, bioRxiv.

[7]  T. Hankemeier,et al.  Urinary Amine and Organic Acid Metabolites Evaluated as Markers for Childhood Aggression: The ACTION Biomarker Study , 2020, Frontiers in Psychiatry.

[8]  J. Kaprio,et al.  FinnTwin16: A Longitudinal Study from Age 16 of a Population-Based Finnish Twin Cohort , 2019, Twin Research and Human Genetics.

[9]  G. Willemsen,et al.  The Netherlands Twin Register: Longitudinal Research Based on Twin and Twin-Family Designs , 2019, Twin Research and Human Genetics.

[10]  J. Kaprio,et al.  FinnTwin12 Cohort: An Updated Review , 2019, Twin Research and Human Genetics.

[11]  S. Horvath,et al.  DNA methylation-based estimator of telomere length , 2019, Aging.

[12]  J. Kaprio,et al.  The Older Finnish Twin Cohort — 45 Years of Follow-up , 2019, Twin Research and Human Genetics.

[13]  Andrew E. Teschendorff,et al.  eFORGE v2.0: updated analysis of cell type-specific signal in epigenomic data , 2019, Bioinform..

[14]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[15]  P. Hougaard,et al.  Lifespans of Twins: Does Zygosity Matter? , 2019, Genes.

[16]  James C. Hu,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2019 .

[17]  Anushya Muruganujan,et al.  PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools , 2018, Nucleic Acids Res..

[18]  Tao Zhang,et al.  EWAS Atlas: a curated knowledgebase of epigenome-wide association studies , 2018, Nucleic Acids Res..

[19]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[20]  Juan Liu,et al.  Edge‐group sparse PCA for network‐guided high dimensional data analysis , 2018, Bioinform..

[21]  Noah A. Kallsen,et al.  Genome-wide analysis of DNA methylation in buccal cells: a study of monozygotic twins and mQTLs , 2018, Epigenetics & Chromatin.

[22]  Natalia B. Ivanova,et al.  Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency. , 2018, Cell stem cell.

[23]  A. Prentice,et al.  Establishment of environmentally sensitive DNA methylation states in the very early human embryo , 2018, Science Advances.

[24]  George Davey Smith,et al.  Meffil: efficient normalization and analysis of very large DNA methylation datasets , 2018, Bioinform..

[25]  Bas T. Heijmans,et al.  omicsPrint: detection of data linkage errors in multiple omics studies , 2018, Bioinform..

[26]  Robert Plomin,et al.  Childhood aggression and the co-occurrence of behavioural and emotional problems: results across ages 3–16 years from multiple raters in six cohorts in the EU-ACTION project , 2018, European Child & Adolescent Psychiatry.

[27]  Rondi A. Butler,et al.  An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray , 2018, Genome Biology.

[28]  C. Theda,et al.  Quantitation of the cellular content of saliva and buccal swab samples , 2018, Scientific Reports.

[29]  Shijie C. Zheng,et al.  A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. , 2018, Epigenomics.

[30]  Stuart J. Ritchie,et al.  Epigenetic prediction of complex traits and death , 2018, Genome Biology.

[31]  D. Belsky,et al.  Analysis of DNA Methylation in Young People: Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood. , 2018, The American journal of psychiatry.

[32]  P. Vineis,et al.  Epigenetic supersimilarity of monozygotic twin pairs , 2018, Genome Biology.

[33]  Rong Li,et al.  Single-cell DNA methylome sequencing of human preimplantation embryos , 2017, Nature Genetics.

[34]  Patrick De Boever,et al.  RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip , 2017, BMC Genomics.

[35]  Tom R. Gaunt,et al.  Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity , 2016, Nature.

[36]  Jean-Philippe Fortin,et al.  Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi , 2016, bioRxiv.

[37]  A. Hofman,et al.  Disease variants alter transcription factor levels and methylation of their binding sites , 2016, Nature Genetics.

[38]  R. Micura,et al.  Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain , 2017, Genome Biology.

[39]  Timothy J. Peters,et al.  Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling , 2016, Genome Biology.

[40]  Paolo Vineis,et al.  Epigenetic Signatures of Cigarette Smoking , 2016, Circulation. Cardiovascular genetics.

[41]  Morris A. Swertz,et al.  Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms , 2016, Genome Biology.

[42]  Julian N. Robinson,et al.  Prospective risk of stillbirth and neonatal complications in twin pregnancies: systematic review and meta-analysis , 2016, British Medical Journal.

[43]  Jack A. Taylor,et al.  RCP: a novel probe design bias correction method for Illumina Methylation BeadChip , 2016, Bioinform..

[44]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[45]  A. Uitterlinden,et al.  Genetic and environmental influences interact with age and sex in shaping the human methylome , 2016, Nature Communications.

[46]  M. Esteller,et al.  Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences , 2015, Epigenomics.

[47]  N. Martin,et al.  Chorionicity and Heritability Estimates from Twin Studies: The Prenatal Environment of Twins and Their Resemblance Across a Large Number of Traits , 2015, Behavior genetics.

[48]  Liang Niu,et al.  ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip , 2015, Nucleic acids research.

[49]  G. Cagney,et al.  The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis , 2015, Scientific Reports.

[50]  Dorret I. Boomsma,et al.  Aggression in children: unravelling the interplay of genes and environment through (epi)genetics and metabolomics , 2015 .

[51]  J. Mill,et al.  Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes , 2015, Epigenetics.

[52]  F. Carlotti,et al.  DNA Methylation Landscapes of Human Fetal Development , 2015, PLoS genetics.

[53]  Tiphaine C. Martin,et al.  coMET: visualisation of regional epigenome-wide association scan results and DNA co-methylation patterns , 2015, BMC Bioinformatics.

[54]  P. Elliott,et al.  A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies , 2015, Genome Biology.

[55]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[56]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[57]  P. Eline Slagboom,et al.  MethylAid: visual and interactive quality control of large Illumina 450k datasets , 2014, Bioinform..

[58]  Hein Putter,et al.  DNA methylation signatures link prenatal famine exposure to growth and metabolism , 2014, Nature Communications.

[59]  Nilesh J Samani,et al.  Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation , 2014, Epigenetics.

[60]  M. Scholz,et al.  Impact of pre-imputation SNP-filtering on genotype imputation results , 2014, BMC Genetics.

[61]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[62]  K. Hansen,et al.  Functional normalization of 450k methylation array data improves replication in large cancer studies , 2014, Genome Biology.

[63]  Pieter B. T. Neerincx,et al.  The Genome of the Netherlands: design, and project goals , 2013, European Journal of Human Genetics.

[64]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[65]  Nicholas G Martin,et al.  Contribution of genetic variation to transgenerational inheritance of DNA methylation , 2014, Genome Biology.

[66]  P. Vergani,et al.  Stillbirths in singletons, dichorionic and monochorionic twins: a comparison of risks and causes. , 2013, European journal of obstetrics, gynecology, and reproductive biology.

[67]  Ruth Pidsley,et al.  A data-driven approach to preprocessing Illumina 450K methylation array data , 2013, BMC Genomics.

[68]  R. Weksberg,et al.  Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray , 2013, Epigenetics.

[69]  J. Kaprio The Finnish Twin Cohort Study: An Update , 2013, Twin Research and Human Genetics.

[70]  H. M. Draisma,et al.  The Adult Netherlands Twin Register: Twenty-Five Years of Survey and Biological Data Collection , 2013, Twin Research and Human Genetics.

[71]  Francesco Marabita,et al.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data , 2012, Bioinform..

[72]  Pau Farré,et al.  Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array , 2013, Epigenetics & Chromatin.

[73]  P. Scheet,et al.  The Young Netherlands Twin Register (YNTR): Longitudinal Twin and Family Studies in Over 70,000 Children , 2012, Twin Research and Human Genetics.

[74]  Alireza Moayyeri,et al.  The UK Adult Twin Registry (TwinsUK Resource) , 2012, Twin Research and Human Genetics.

[75]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[76]  Devin C. Koestler,et al.  DNA methylation arrays as surrogate measures of cell mixture distribution , 2012, BMC Bioinformatics.

[77]  Joseph E. Powell,et al.  The Brisbane Systems Genetics Study: Genetical Genomics Meets Complex Trait Genetics , 2012, PloS one.

[78]  J. Smits,et al.  Twinning across the Developing World , 2011, PloS one.

[79]  R. Yuen,et al.  Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies , 2011 .

[80]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[81]  T. Lehner,et al.  The Netherlands Twin Register Biobank: A Resource for Genetic Epidemiological Studies , 2010, Twin Research and Human Genetics.

[82]  Wolfgang Wagner,et al.  Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. , 2010, Genome research.

[83]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[84]  P. Pharoah,et al.  Monozygotic twinning, cerebral palsy and congenital anomalies. , 2009, Human reproduction update.

[85]  A. Westerveld,et al.  Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells , 2009, European Journal of Human Genetics.

[86]  G. Machin Familial monozygotic twinning: A report of seven pedigrees , 2009, American journal of medical genetics. Part C, Seminars in medical genetics.

[87]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[88]  G. Willemsen,et al.  Familial twinning and fertility in Dutch mothers of twins , 2008, American journal of medical genetics. Part A.

[89]  Hein Putter,et al.  Persistent epigenetic differences associated with prenatal exposure to famine in humans , 2008, Proceedings of the National Academy of Sciences.

[90]  J. Rankin,et al.  Congenital anomalies in twins: a register-based study. , 2008, Human reproduction.

[91]  Shigetaka Kitajima,et al.  Developmental Pluripotency-associated 4 (DPPA4) Localized in Active Chromatin Inhibits Mouse Embryonic Stem Cell Differentiation into a Primitive Ectoderm Lineage* , 2007, Journal of Biological Chemistry.

[92]  A. Sinclair,et al.  Dppa2 and Dppa4 Are Closely Linked SAP Motif Genes Restricted to Pluripotent Cells and the Germ Line , 2007, Stem cells.

[93]  G. Willemsen,et al.  Netherlands Twin Register: From Twins to Twin Families , 2006, Twin Research and Human Genetics.

[94]  Danielle Posthuma,et al.  Netherlands Twin Register: From Twins to Twin Families , 2006, Twin Research and Human Genetics.

[95]  K. Ajlouni,et al.  Familial monozygotic twinning: report of an extended multi-generation family. , 2004 .

[96]  K. Ajlouni,et al.  Familial Monozygotic Twinning: Report of an Extended Multi-generation Family , 2004, Twin Research.

[97]  J. Hall Twinning , 2003, The Lancet.

[98]  D. Huntsman,et al.  Mechanisms of monozygotic (MZ) twinning: A possible role for the cell adhesion molecule, E‐cadherin , 2003, American journal of medical genetics. Part A.

[99]  T. Moffitt Teen-aged mothers in contemporary Britain. , 2002, Journal of child psychology and psychiatry, and allied disciplines.

[100]  V. Rakyan,et al.  Metastable epialleles in mammals. , 2002, Trends in genetics : TIG.

[101]  R. Weksberg,et al.  Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. , 2002, Human molecular genetics.

[102]  D. Sherer,et al.  Adverse Perinatal Outcome of Twin Pregnancies According to Chorionicity: Review of the Literature , 2001, American journal of perinatology.

[103]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[104]  H. Landy,et al.  The vanishing twin: a review. , 1998, Human reproduction update.

[105]  P. Prodöhl,et al.  Polyembryony in Armadillos , 1998 .

[106]  C. Boklage Survival probability of human conceptions from fertilization to term. , 1990, International journal of fertility.

[107]  J. Hustin,et al.  Clinical and Morphologic Aspects of the Vanishing Twin Phenomenon , 1988, Obstetrics and gynecology.

[108]  C. Billeaud,et al.  Multiple pregnancy , 1963 .

[109]  David W. Smith,et al.  Monozygotic twinning and structural defects. , 1979, The Journal of pediatrics.

[110]  M. A. Harvey,et al.  Familial monozygotic twinning. , 1977, The Journal of pediatrics.

[111]  N. Myrianthopoulos Congenital Malformations in Twins , 1974 .

[112]  R. J. Harrison,et al.  The Biology of Twinning in Man , 1971 .

[113]  D. Wehrung,et al.  Congenital malformations in twins. , 1970, American journal of human genetics.