On Discrete Conjugate Semi-Geodesic Nets

We introduce two canonical discretizations of nets on generic surfaces, which consist of an one-parameter family of geodesics and its associated family of conjugate lines. The two types of “discrete conjugate semi-geodesic nets” constitute discrete focal nets of circular nets, which mimics the classical connection between surfaces parametrized in terms of curvature coordinates and their focal surfaces on which one corresponding family of coordinate lines are geodesics. The discrete surfaces constructed in this manner are termed circular-geodesic and conical-geodesic nets, respectively, and may be characterized by compact angle conditions. Geometrically, circular-geodesic nets are constructed via normal lines of circular nets, while conical-geodesic nets inherit their name from their intimately related conical nets, which also discretize curvature line parametrized surfaces. We establish a variety of properties of these discrete nets, including their algebraic and geometric 3D consistency, with the latter playing an important role in (integrable) discrete differential geometry.

[1]  G. M.,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1910, Nature.

[2]  A. Bobenko Symmetries and Integrability of Difference Equations: Discrete conformal maps and surfaces , 1999 .

[3]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[4]  A. Bobenko,et al.  On a Discretization of Confocal Quadrics. A Geometric Approach to General Parametrizations , 2017, International Mathematics Research Notices.

[5]  U. Pinkall,et al.  Discrete isothermic surfaces. , 1994 .

[6]  P. Santini,et al.  Multidimensional quadrilateral lattices are integrable , 1996, solv-int/9612007.

[7]  Johannes Wallner,et al.  Geometric modeling with conical meshes and developable surfaces , 2006, SIGGRAPH 2006.

[8]  H. Graf,et al.  Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache , 1931 .

[9]  Mathieu Desbrun,et al.  Discrete Differential Geometry , 2008 .

[10]  Wenzel Jakob,et al.  Reversible Jump Metropolis Light Transport Using Inverse Mappings , 2017, ACM Trans. Graph..

[11]  Hans-Peter Seidel,et al.  Real-time lens blur effects and focus control , 2010, SIGGRAPH 2010.

[12]  P. Santini,et al.  The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices , 1997 .

[13]  Johannes Wallner,et al.  The focal geometry of circular and conical meshes , 2008, Adv. Comput. Math..

[14]  Tim Hoffmann,et al.  On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces , 2008 .

[15]  Andrew O. Sageman-Furnas,et al.  A discrete parametrized surface theory in R^3 , 2014, 1412.7293.

[16]  M. Kilian,et al.  Geodesic patterns , 2010, ACM Transactions on Graphics.

[17]  Johannes Wallner,et al.  An Angle Criterion for Conical Mesh Vertices , 2006 .

[18]  Tim Hoffmann,et al.  On the equivalence of the discrete nonlinear Schr , 1999, solv-int/9907002.

[19]  R. Sauer,et al.  Parallelogrammgitter als Modelle pseudosphärischer Flächen , 1950 .

[20]  Manuel Mañas,et al.  Transformations of quadrilateral lattices , 1997, solv-int/9712017.

[21]  W. Schief On the integrability of Bertrand curves and Razzaboni surfaces , 2003 .

[22]  U. Pinkall,et al.  Discrete surfaces with constant negative Gaussian curvature and the Hirota equation , 1996 .

[23]  Ivan Izmestiev,et al.  Classification of flexible Kokotsakis polyhedra with quadrangular base , 2014, 1411.0289.

[24]  Arseniy V. Akopyan,et al.  On Mutually Diagonal Nets on (Confocal) Quadrics and 3-Dimensional Webs , 2019, Discrete & Computational Geometry.

[25]  B. Konopelchenko,et al.  Three–dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  A. Kokotsakis,et al.  Über bewegliche Polyeder , 1933 .

[27]  Olga Sorkine-Hornung,et al.  Discrete Geodesic Nets for Modeling Developable Surfaces , 2017, ACM Trans. Graph..