Using Data Analytics to Optimize Public Transportation on a College Campus

Using a large volume of bus data in the form of GPS coordinates (over 100 million data points) and automated passenger count data (over 1 million data points) we have developed (1) a system of analysis and prediction of future public transportation demand (2) a new model that uses concepts specific to college campuses that maximizes passenger satisfaction. Using these concepts we improve service of a model college public transportation service and more specifically the Indiana University Campus Bus Service (IUCBS).

[1]  Partha Chakroborty,et al.  Optimal Scheduling of Urban Transit Systems Using Genetic Algorithms , 1995 .

[2]  Fang Zhao,et al.  Optimization of transit route network, vehicle headways and timetables for large-scale transit networks , 2008, Eur. J. Oper. Res..

[3]  Jin-Kao Hao,et al.  Transit network design and scheduling: A global review , 2008 .

[4]  Giuseppe F. Italiano,et al.  Better transit routing by exploiting vehicle GPS data , 2014, IWCTS '14.

[5]  W. Y. Szeto,et al.  Review on Urban Transportation Network Design Problems , 2013 .

[6]  Avishai Ceder,et al.  Urban Transit Scheduling: Framework, Review and Examples , 2002 .

[7]  A. Barra,et al.  Solving the Transit Network Design Problem with Constraint Programming , 2007 .

[8]  Michael E Williams,et al.  U-PASS: A MODEL TRANSPORTATION MANAGEMENT PROGRAM THAT WORKS , 1993 .

[9]  Rabiul Islam,et al.  MEASURING CUSTOMER’S SATISFACTION ON BUS TRANSPORTATION , 2014 .

[10]  S E Elias,et al.  THE USE OF DIGITAL COMPUTERS IN THE ECONOMIC SCHEDULING FOR BOTH MAN AND MACHINE IN PUBLIC TRANSPORTATION , 1964 .

[11]  Hong K. Lo,et al.  A Mixed Integer Formulation for Multiple-Route Transit Network Design , 2003, J. Math. Model. Algorithms.

[12]  ANTHONY WREN,et al.  A genetic algorithm for public transport driver scheduling , 1995, Comput. Oper. Res..

[13]  Jau-Ming Su,et al.  Integration of Transit Demand and Big Data for Bus Route Design in Taiwan , 2016 .

[14]  Kevin J. Krizek,et al.  Analyzing Transit Service Reliability Using Detailed Data from Automatic Vehicular Locator Systems , 2008 .

[15]  Partha Chakroborty,et al.  Genetic Algorithms for Optimal Urban Transit Network Design , 2003 .

[16]  Constantinos Antoniou,et al.  Public transit user satisfaction: Variability and policy implications , 2008 .

[17]  R. Gutkowski,et al.  University Transportation Survey: Transportation in University Communities , 2003 .

[18]  Nigel H. M. Wilson,et al.  Bus network design , 1986 .

[19]  Peter G Furth,et al.  Using Archived AVL-APC Data to Improve Transit Performance and Management , 2006 .

[20]  J H Miller,et al.  TRANSPORTATION ON COLLEGE AND UNIVERSITY CAMPUSES , 2001 .

[21]  L. R. Comesaña,et al.  Assessing tourist behavioral intentions through perceived service quality and customer satisfaction , 2007 .

[22]  Giuseppe F. Italiano,et al.  Exploiting GPS Data in Public Transport Journey Planners , 2014, SEA.

[23]  Giuseppe F. Italiano,et al.  Is Timetabling Routing Always Reliable for Public Transport? , 2013, ATMOS.

[24]  M. Toda,et al.  The Experimental Determination of Indifference Curves , 1969 .

[25]  Ching-Fu Chen,et al.  Behavioral intentions of public transit passengers--The roles of service quality, perceived value, satisfaction and involvement , 2011 .

[26]  Hani S. Mahmassani,et al.  AN AI-BASED APPROACH FOR TRANSIT ROUTE SYSTEM PLANNING AND DESIGN , 1991 .

[27]  Ties Brands,et al.  Data driven improvements in public transport: the Dutch example , 2015, Public Transp..

[28]  Amer Shalaby,et al.  PREDICTION MODEL OF BUS ARRIVAL AND DEPARTURE TIMES USING AVL AND APC DATA , 2004 .

[29]  Jacques Desrosiers,et al.  Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems , 1998, Transp. Sci..

[30]  André de Palma,et al.  OPTIMAL TIMETABLES FOR PUBLIC TRANSPORTATION , 2001 .

[31]  Leena Suhl,et al.  A time-space network based exact optimization model for multi-depot bus scheduling , 2006, Eur. J. Oper. Res..