A Variational Model for Infinite Perimeter Segmentations Based on Lipschitz Level Set Functions: Denoising while Keeping Finely Oscillatory Boundaries

We propose a new model for segmenting piecewise constant images with irregular object boundaries: a variant of the Chan–Vese model [T. F. Chan and L. A. Vese, IEEE Trans. Image Process., 10 (2000), pp. 266–277], where the length penalization of the boundaries is replaced by the area of their neighborhood of thickness $\varepsilon$. Our aim is to keep fine details and irregularities of the boundaries while denoising additive Gaussian noise. For the numerical computation we revisit the classical $BV$ level set formulation [S. Osher and J. A. Sethian, J. Comput. Phys., 79 (1988), pp. 12–49] considering suitable Lipschitz level set functions instead of $BV$ ones.

[1]  Luminita A. Vese,et al.  Image segmentation using a multilayer level-set approach , 2009 .

[2]  Giuseppe Buttazzo,et al.  Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .

[3]  Adam M. Oberman A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions , 2004, Math. Comput..

[4]  Luminita A. Vese,et al.  An image decomposition model using the total variation and the infinity Laplacian , 2007, Electronic Imaging.

[5]  T. Chan,et al.  International Journal of C 2004 Institute for Scientific Numerical Analysis and Modeling Computing and Information a Survey on Multiple Level Set Methods with Applications for Identifying Piecewise Constant Functions , 2022 .

[6]  Andrea Braides Γ-convergence for beginners , 2002 .

[7]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[8]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[9]  A. Garroni,et al.  Dielectric breakdown: optimal bounds , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Andrea Braides,et al.  Non-local approximation of the Mumford-Shah functional , 1997 .

[11]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[12]  Tien D. Bui,et al.  Image segmentation and selective smoothing by using Mumford-Shah model , 2005, IEEE Transactions on Image Processing.

[13]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[14]  Thomas Brox,et al.  Level Set Based Image Segmentation with Multiple Regions , 2004, DAGM-Symposium.

[15]  G. Aronsson Extension of functions satisfying lipschitz conditions , 1967 .

[16]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[17]  Jianhong Shen,et al.  Piecewise H−1+H0+H1 images and the Mumford-Shah-Sobolevmodel for segmented image decomposition , 2005 .

[18]  Tony F. Chan,et al.  A Level-Set and Gabor-based Active Contour Algorithm for Segmenting Textured Images , 2002 .

[19]  Shen,et al.  Piecewise H − 1 + H 0 + H 1 Images and the Mumford-Shah-Sobolev Model for Segmented Image Decomposition Jianhong ( , 2005 .

[20]  Yoon Mo Jung,et al.  Multiphase Image Segmentation via Modica-Mortola Phase Transition , 2007, SIAM J. Appl. Math..

[21]  M. Negri A non-local approximation of free discontinuity problems in SBV and SBD , 2006 .

[22]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[23]  Fernando Fraternali,et al.  Eigenfracture: An Eigendeformation Approach to Variational Fracture , 2009, Multiscale Model. Simul..

[24]  M. Crandall,et al.  A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .

[25]  Xue-Cheng Tai,et al.  A variant of the level set method and applications to image segmentation , 2006, Math. Comput..

[26]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[27]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.