The Analysis of Spatial Experiments

Anyone with an interest in precision agriculture has already formed a hypothesis that the field is a sub-optimum management unit for cropping. The role of experimentation is to test this hypothesis. Geostatistics can play an important role in analysing experiments for site-specific crop management: put simply, spatial autocorrelation must be accounted for if one is to draw valid inferences. We provide here some background to the basic concepts of agronomic experimentation. We then consider two broad classes of experimental design for precision agriculture (management-class experiments and local-response experiments), and show, with the aid of case studies, how each may be analysed geostatistically. Ultimately though, if farmers are compelled to use relatively simple designs and less formal analyses, then researchers must follow and adapt their geostatistical analyses accordingly.

[1]  David J. Pannell,et al.  On the estimation of on-farm benefits of agricultural research , 1999 .

[2]  R. M. Lark,et al.  A landscape-scale experiment on the changes in available potassium over a winter wheat cropping season , 2007 .

[3]  E. John Russell Soil Conditions and Plant Growth , 1940 .

[4]  D. A. Boyd,et al.  Nitrogen requirement of cereals: 1. Response curves , 1976, The Journal of Agricultural Science.

[5]  George Christakos,et al.  Bayesian Maximum Entropy Analysis and Mapping: A Farewell to Kriging Estimators? , 1998 .

[6]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[7]  Eulogio Pardo-Igúzquiza,et al.  Maximum Likelihood Inference Of Spatial Covariance Parameters Of Soil Properties , 1998 .

[8]  Eulogio Pardo-Igúzquiza,et al.  AMLE3D: a computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation , 1997 .

[9]  Simon E. Cook,et al.  Coping with variability in agricultural production ‐implications for soil testing and fertiliser management , 2000 .

[10]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[11]  R. G. Petersen,et al.  Agricultural Field Experiments: Design and Analysis , 1994 .

[12]  Alfred Stein,et al.  Constrained Optimization of Spatial Sampling using Continuous Simulated Annealing , 1998 .

[13]  Terrance M. Hurley,et al.  Estimating the Potential Value of Variable Rate Nitrogen Applications: A Comparison of Spatial Econometric and Geostatistical Models , 2005 .

[14]  R. M. Lark,et al.  The geostatistical analysis of experiments at the landscape-scale , 2006 .

[15]  Brett Whelan,et al.  Establishing Management Classes for Broadacre Agricultural Production , 2007 .

[16]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[17]  Andreas Papritz,et al.  Standardized vs. customary ordinary cokriging: Some comments on the article “The geostatistical analysis of experiments at the landscape-scale” by T.F.A. Bishop and R.M. Lark , 2008 .

[18]  Dayton M. Lambert,et al.  A Comparison of Four Spatial Regression Models for Yield Monitor Data: A Case Study from Argentina , 2004, Precision Agriculture.

[19]  P. C. Robert,et al.  Spatial Relationships of Soil Nitrogen with Corn Yield Response to Applied Nitrogen , 1996 .

[20]  J. Besag,et al.  Bayesian analysis of agricultural field experiments , 1999 .

[21]  Zhiyi Chi,et al.  Approximating likelihoods for large spatial data sets , 2004 .

[22]  D. F. Cox,et al.  Statistical Procedures for Agricultural Research. , 1984 .

[23]  S. Hurlbert Pseudoreplication and the Design of Ecological Field Experiments , 1984 .

[24]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[25]  J. V. Stafford,et al.  On-farm field experiments for precision agriculture. , 2003 .

[26]  Alex. B. McBratney,et al.  A Parametric Transfer Function for Grain-Flow Within a Conventional Combine Harvester , 2002, Precision Agriculture.

[27]  H. F. Reetz On-Farm Research Opportunities Through Site-Specific Management , 1996 .

[28]  R. M. Lark,et al.  A Method to Investigate Within‐Field Variation of the Response of Combinable Crops to an Input , 2003 .

[29]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[30]  Luc Anselin,et al.  A Spatial Econometric Approach to the Economics of Site‐Specific Nitrogen Management in Corn Production , 2004 .

[31]  W. B. Mercer,et al.  The Experimental Error of Field Trials , 1911, The Journal of Agricultural Science.

[32]  R. Lark,et al.  Model‐based analysis using REML for inference from systematically sampled data on soil , 2004 .

[33]  F. H. C. Marriott,et al.  Experiments: Design and Analysis. , 1978 .

[34]  S. E. Cook,et al.  Field-Scale Experiments for Site-Specific Crop Management. Part II: A Geostatistical Analysis , 2004, Precision Agriculture.

[35]  D. J. Brus,et al.  Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion) , 1997 .

[36]  R. G. V. Bramley,et al.  Enhancing the value of field experimentation through whole-of-block designs , 2010, Precision Agriculture.

[37]  B. Minasny,et al.  Spatial prediction of soil properties using EBLUP with the Matérn covariance function , 2007 .

[38]  D. J. Brus,et al.  Sampling for Natural Resource Monitoring , 2006 .