A comprehensive evaluation of assembly scaffolding tools

[1]  Andrew C. Adey,et al.  Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions , 2013, Nature Biotechnology.

[2]  Ryan Brinkman,et al.  BAIT: Organizing genomes and mapping rearrangements in single cells , 2013, Genome Medicine.

[3]  M. Berriman,et al.  REAPR: a universal tool for genome assembly evaluation , 2013, Genome Biology.

[4]  Nilgun Donmez,et al.  SCARPA: scaffolding reads with practical algorithms , 2013, Bioinform..

[5]  Deacon J. Sweeney,et al.  Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus) , 2012, Nature Biotechnology.

[6]  Inanç Birol,et al.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species , 2013, GigaScience.

[7]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[8]  Nuno A. Fonseca,et al.  Tools for mapping high-throughput sequencing data , 2012, Bioinform..

[9]  W. Pirovano,et al.  Toward almost closed genomes with GapFiller , 2012, Genome Biology.

[10]  Marcel J. T. Reinders,et al.  GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies , 2012, Bioinform..

[11]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[12]  M. Schatz,et al.  Algorithms Gage: a Critical Evaluation of Genome Assemblies and Assembly Material Supplemental , 2008 .

[13]  R. Durbin,et al.  Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.

[14]  I-Min A. Chen,et al.  The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata , 2011, Nucleic Acids Res..

[15]  Sergey Koren,et al.  Bambus 2: scaffolding metagenomes , 2011, Bioinform..

[16]  Esko Ukkonen,et al.  Fast scaffolding with small independent mixed integer programs , 2011, Bioinform..

[17]  Nuno A. Fonseca,et al.  Assemblathon 1: a competitive assessment of de novo short read assembly methods. , 2011, Genome research.

[18]  Wing-Kin Sung,et al.  Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences , 2011, RECOMB.

[19]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[20]  Adel Dayarian,et al.  SOPRA: Scaffolding algorithm for paired reads via statistical optimization , 2010, BMC Bioinformatics.

[21]  Matthew Berriman,et al.  Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology , 2010, Bioinform..

[22]  M. Berriman,et al.  Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps , 2010, Genome Biology.

[23]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[24]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[25]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[26]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[27]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[28]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[29]  S. Salzberg,et al.  Hierarchical scaffolding with Bambus. , 2003, Genome research.

[30]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[31]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[32]  Eugene W. Myers,et al.  The greedy path-merging algorithm for contig scaffolding , 2002, JACM.