Standard bases in mixed power series and polynomial rings over rings
暂无分享,去创建一个
[1] Eimear Byrne,et al. Gröbner Bases over Commutative Rings and Applications to Coding Theory , 2009, Gröbner Bases, Coding, and Cryptography.
[2] Hans Schönemann,et al. Standard bases, syzygies and their implementation in SINGULAR , 1994 .
[3] Gerhard Pfister,et al. Advances and improvements in the theory of standard bases and syzygies , 1996 .
[4] Rekha R. Thomas,et al. Computing tropical varieties , 2007, J. Symb. Comput..
[5] Deepak Kapur,et al. Computing a Gröbner Basis of a Polynomial Ideal over a Euclidean Domain , 1988, J. Symb. Comput..
[6] Ferdinando Mora,et al. An Algorithm to Compute the Equations of Tangent Cones , 1982, EUROCAM.
[7] Hans Grauert,et al. Über die deformation isolierter singularitäten analytischer mengen , 1971 .
[8] Afshan Sadiq,et al. Standard Bases over Rings , 2009, Int. J. Algebra Comput..
[9] Deepak Kapur,et al. Algorithms for Computing Groebner Bases of Polynomial Ideals over Various Euclidean Rings , 1984, EUROSAM.
[10] Michael Kalkbrener,et al. Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..
[11] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[12] Rekha R. Thomas,et al. Computing Gröbner fans , 2007, Math. Comput..
[13] Thomas Markwig,et al. Standard bases in K , 2008, J. Symb. Comput..
[14] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[15] Thomas Markwig,et al. A Field of Generalised Puiseux Series for Tropical Geometry , 2007, 0709.3784.
[16] Teo Mora,et al. La queste del saint Gra(AL): A computational approach to local algebra , 1991, Discret. Appl. Math..
[17] Yue Ren,et al. Gröbner fans of x-homogeneous ideals in R〚t〛[x] , 2017, J. Symb. Comput..
[18] Teo Mora,et al. The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..
[19] Hans-Gert Gräbe,et al. The tangent cone algorithm and homogenization , 1994 .
[20] Alessandro Logar. Constructions over localizations of rings , 1989 .
[21] H. Hauser,et al. EFFECTIVE ALGEBRAIC POWER SERIES , 2005 .
[22] H. Michael Möller,et al. On the Construction of Gröbner Bases Using Syzygies , 1988, J. Symb. Comput..
[23] Komei Fukuda,et al. The generic Gröbner walk , 2007, J. Symb. Comput..
[24] Teo Mora,et al. A computational model for algebraic power series , 1992 .
[25] I. Yengui,et al. Dynamical Gröbner bases over Dedekind rings , 2010 .
[26] Daniel Lichtblau,et al. Effective computation of strong Gröbner bases over Euclidean domains , 2012 .
[27] W. T. Tutte,et al. Encyclopedia of Mathematics and its Applications , 2001 .
[28] W. W. Adams,et al. An Introduction to Gröbner Bases , 2012 .
[29] Herwig Hauser,et al. Perfect bases for differential equations , 2005, J. Symb. Comput..
[30] T. Becker. Stability and buchberger criterion for standard bases in power series rings , 1990 .