Comparative Mapping in the Pinaceae

A comparative genetic map was constructed between two important genera of the family Pinaceae. Ten homologous linkage groups in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) were identified using orthologous expressed sequence tag polymorphism (ESTP) and restriction fragment length polymorphism (RFLP) markers. The comparative mapping revealed extensive synteny and colinearity between genomes of the Pinaceae, consistent with the hypothesis of conservative chromosomal evolution in this important plant family. This study reports the first comparative map in forest trees at the family taxonomic level and establishes a framework for comparative genomics in Pinaceae.

[1]  Garth R. Brown,et al.  Comparative genome and QTL mapping between maritime and loblolly pines , 2003, Molecular Breeding.

[2]  D. Laurie,et al.  Trends in comparative genetics and their potential impacts on wheat and barley research , 2002, Plant Molecular Biology.

[3]  J. Sherman,et al.  A barley RFLP map: alignment of three barley maps and comparisons to Gramineae species , 1995, Theoretical and Applied Genetics.

[4]  D. Neale,et al.  Inheritance of restriction fragment length polymorphisms and random amplified polymorphic DNAs in coastal Douglas-fir , 1994, Theoretical and Applied Genetics.

[5]  M. Devey,et al.  An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree , 1994, Theoretical and Applied Genetics.

[6]  S. Tanksley,et al.  Homoeologous relationships of rice, wheat and maize chromosomes , 1993, Molecular and General Genetics MGG.

[7]  M. Devey,et al.  Inheritance of RFLP loci in a loblolly pine three-generation pedigree , 1991, Theoretical and Applied Genetics.

[8]  R. Schmidt Plant genome evolution: lessons from comparative genomics at the DNA level , 2004, Plant Molecular Biology.

[9]  D. Neale,et al.  Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. , 2003, Genetics.

[10]  Gerald A Tuskan,et al.  Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL Verification and candidate gene mapping. , 2003, Genetics.

[11]  D. Neale,et al.  Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda , 2003, Theoretical and Applied Genetics.

[12]  J. Vrebalov,et al.  Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement. , 2003, The Plant journal : for cell and molecular biology.

[13]  R. Sederoff,et al.  Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Abdelali Barakat,et al.  Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. , 2003, The Plant journal : for cell and molecular biology.

[15]  F. Zou,et al.  Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. , 2003, Genetics.

[16]  Doreen Ware,et al.  Comparison of genes among cereals. , 2003, Current opinion in plant biology.

[17]  Takuji Sasaki Genome studies and molecular genetics: The rice genome and comparative genomics of higher plants , 2003 .

[18]  W. McCombie,et al.  Syntenic Relationships between Medicago truncatulaand Arabidopsis Reveal Extensive Divergence of Genome Organization1,212 , 2003, Plant Physiology.

[19]  R. Shoemaker,et al.  Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana , 2003, Theoretical and Applied Genetics.

[20]  Abdelali Barakat,et al.  Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map , 2003, Molecular Genetics and Genomics.

[21]  L. Stein,et al.  Gramene, a Tool for Grass Genomics , 2002, Plant Physiology.

[22]  L. Mirny,et al.  Using orthologous and paralogous proteins to identify specificity determining residues. , 2002, Genome biology.

[23]  Daphne Preuss,et al.  Beyond the Arabidopsis Genome: Opportunities for Comparative Genomics1 , 2002, Plant Physiology.

[24]  S. Tanksley,et al.  Conservation of gene function in the solanaceae as revealed by comparative mapping of domestication traits in eggplant. , 2002, Genetics.

[25]  R. Van der Hoeven,et al.  Identification, Analysis, and Utilization of Conserved Ortholog Set Markers for Comparative Genomics in Higher Plants Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010479. , 2002, The Plant Cell Online.

[26]  R. Sederoff,et al.  Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species , 2002, Theoretical and Applied Genetics.

[27]  S. Barnes Comparing Arabidopsis to other flowering plants. , 2002, Current opinion in plant biology.

[28]  M. Källersjö,et al.  Seed Plant Relationships and the Systematic Position of Gnetales Based on Nuclear and Chloroplast DNA: Conflicting Data, Rooting Problems, and the Monophyly of Conifers , 2002, International Journal of Plant Sciences.

[29]  D. Neale,et al.  Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties , 2000, Theoretical and Applied Genetics.

[30]  Beat Keller,et al.  Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. , 2002, Annals of botany.

[31]  R. Schubert,et al.  Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst. , 2001, Theoretical and Applied Genetics.

[32]  Nuclear DNA C-values Complete Familial Representation in Gymnosperms , 2001 .

[33]  Lu Lu,et al.  The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis , 2001, Genome Biology.

[34]  Garth R. Brown,et al.  Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. , 2001, Genetics.

[35]  R. Sederoff,et al.  Functional genomics and cell wall biosynthesis in loblolly pine. , 2001 .

[36]  J. Gershenzon,et al.  Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. , 2001, Genetics.

[37]  Honggang Zheng,et al.  Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species , 2001, Theoretical and Applied Genetics.

[38]  Stephen J O'Brien,et al.  Evolution of mammalian genome organization inferred from comparative gene mapping , 2001, Genome Biology.

[39]  T. Sasaki,et al.  New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. , 2001, Genome.

[40]  D. Neale,et al.  Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness , 2001, Theoretical and Applied Genetics.

[41]  D. Neale,et al.  Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush , 2001, Theoretical and Applied Genetics.

[42]  D. Neale,et al.  Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.) , 2001, Theoretical and Applied Genetics.

[43]  C. Desmarais,et al.  Automated finishing with autofinish. , 2001, Genome research.

[44]  M. Freeling Grasses as a single genetic system: reassessment 2001. , 2001, Plant physiology.

[45]  T. Hoover Bacterial Transcription Factors , 2001 .

[46]  D. Sankoff,et al.  Comparative Genomics: "Empirical And Analytical Approaches To Gene Order Dynamics, Map Alignment And The Evolution Of Gene Families" , 2000 .

[47]  C. Elsik,et al.  Comparative Genomics of Plant Chromosomes , 2000, Plant Cell.

[48]  T. Delmonte,et al.  An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. , 2000, Genome research.

[49]  T. Sang,et al.  Phylogeny and divergence times in Pinaceae: evidence from three genomes. , 2000, Molecular biology and evolution.

[50]  W. Fitch Homology a personal view on some of the problems. , 2000, Trends in genetics : TIG.

[51]  D. Grant,et al.  Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Neale,et al.  Use of haploid mixtures and heteroduplex analysis enhance polymorphisms revealed by denaturing gradient gel electrophoresis. , 2000, BioTechniques.

[53]  D. Neale,et al.  Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties , 2000, Theoretical and Applied Genetics.

[54]  M. Devey,et al.  Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers , 1999, Theoretical and Applied Genetics.

[55]  G. Davis,et al.  A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. , 1999, Genetics.

[56]  D. Neale,et al.  A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. , 1999, Genetics.

[57]  J. Bennetzen,et al.  The Grasses as a Single Genetic System , 1999 .

[58]  B. Murray Nuclear DNA Amounts in Gymnosperms , 1998 .

[59]  J. Bousquet,et al.  Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers , 1998, Theoretical and Applied Genetics.

[60]  D. Neale,et al.  A sex-averaged genetic linkage map in coastal Douglas-fir (Pseudotsuga menziesii[Mirb.] Franco var ‘menziesii’) based on RFLP and RAPD markers , 1998, Theoretical and Applied Genetics.

[61]  R. Sederoff,et al.  Analysis of xylem formation in pine by cDNA sequencing. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Bousquet,et al.  Sequence-tagged-site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. , 1998, Genetics.

[63]  S. Strauss,et al.  RAPD Genome maps of Douglas-fir , 1998 .

[64]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[65]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[66]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[67]  K. Devos,et al.  Comparative genetics in the grasses. , 1998, Plant molecular biology.

[68]  D. Neale,et al.  Complex gene families in pine genomes , 1997 .

[69]  H. Goodman,et al.  The genome of Arabidopsis thaliana. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[70]  R. Shoemaker,et al.  Genome conservation among three legume genera detected with DNA markers. , 1995, Genome.

[71]  P. Stam,et al.  Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. , 1993 .

[72]  N E Morton,et al.  Parameters of the human genome. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Ott Analysis of Human Genetic Linkage , 1985 .

[74]  D. P. Fowler,et al.  RATES OF EVOLUTION IN CONIFERS (PINACEAE) , 1976, Evolution; international journal of organic evolution.

[75]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.