A definitive merger-AGN connection at z ∼ 0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed

The question of whether galaxy mergers are linked to the triggering of active galactic nuclei (AGN) continues to be a topic of considerable debate. The issue can be broken down into two distinct questions: 1) Can galaxy mergers trigger AGN? 2) Are galaxy mergers the dominant AGN triggering mechanism? A complete picture of the AGN-merger connection requires that both of these questions are addressed with the same dataset. In previous work, we have shown that galaxy mergers selected from the Sloan Digital Sky Survey (SDSS) show an excess of both optically-selected, and mid-IR colour-selected AGN, demonstrating that the answer to the first of the above questions is affirmative. Here, we use the same optical and mid-IR AGN selection to address the second question, by quantifying the frequency of morphological disturbances in low surface brightness r-band images from the Canada France Imaging Survey (CFIS). Only ~30 per cent of optical AGN host galaxies are morphologically disturbed, indicating that recent interactions are not the dominant trigger. However, almost 60 per cent of mid-IR AGN hosts show signs of visual disturbance, indicating that interactions play a more significant role in nuclear feeding. Both mid-IR and optically selected AGN have interacting fractions that are a factor of two greater than a mass and redshift matched non-AGN control sample, an excess that increases with both AGN luminosity and host galaxy stellar mass.

[1]  L. Simard,et al.  Bulge plus disc and Sérsic decomposition catalogues for 16 908 galaxies in the SDSS Stripe 82 co-adds: a detailed study of theugrizstructural measurements , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  J. Greene,et al.  Accurate Identification of Galaxy Mergers with Imaging , 2019, The Astrophysical Journal.

[3]  Chris J Lintott,et al.  Identification of low surface brightness tidal features in galaxies using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  Jessica R. Lu,et al.  A population of luminous accreting black holes with hidden mergers , 2018, Nature.

[5]  L. Simard,et al.  Spatially resolved star formation and metallicity profiles in post-merger galaxies from MaNGA , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[6]  D. Lambas,et al.  The impact of bars and interactions on optically selected AGNs in spiral galaxies , 2018, Astronomy & Astrophysics.

[7]  J. Barnes,et al.  Go with the Flow: Understanding inflow mechanisms in galaxy collisions , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  Ce Zhang,et al.  Using transfer learning to detect galaxy mergers , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  S. Juneau,et al.  Cosmological simulations of black hole growth II: how (in)significant are merger events for fuelling nuclear activity? , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  C. Conselice,et al.  Evidence for Merger-driven Growth in Luminous, High-z, Obscured AGNs in the CANDELS/COSMOS Field , 2017, 1712.02424.

[11]  G. Snyder,et al.  The power of infrared AGN selection in mergers: a theoretical study , 2017, 1711.02094.

[12]  Y. Mellier,et al.  The Canada–France Imaging Survey: First Results from the u-Band Component , 2017, 1708.06356.

[13]  A. Leauthaud,et al.  Galaxy Interactions Trigger Rapid Black Hole Growth: an unprecedented view from the Hyper Suprime-Cam Survey , 2017, 1706.07436.

[14]  V. Wild,et al.  The redshift evolution of major merger triggering of luminous AGN : a slight enhancement at z∼2 , 2017, 1705.03769.

[15]  H. Martel,et al.  Star formation history in barred spiral galaxies – active galactic nucleus feedback , 2017, 1705.03053.

[16]  L. Ho,et al.  Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured , 2017, 1701.04825.

[17]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[18]  L. Mayer,et al.  A survey of dual active galactic nuclei in simulations of galaxy mergers: frequency and properties , 2016, 1611.09244.

[19]  J. Trump,et al.  Host galaxies of luminous z ∼ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities , 2016, 1611.06236.

[20]  R. Teyssier,et al.  High-redshift major mergers weakly enhance star formation , 2016, 1610.03877.

[21]  J. Greene,et al.  MID-INFRARED COLORS OF DWARF GALAXIES: YOUNG STARBURSTS MIMICKING ACTIVE GALACTIC NUCLEI , 2016, 1609.06721.

[22]  M. Brodwin,et al.  Incidence of WISE-selected obscured AGNs in major mergers and interactions from the SDSS , 2016, 1609.04832.

[23]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[24]  A. Coil,et al.  THE MOSDEF SURVEY: AGN MULTI-WAVELENGTH IDENTIFICATION, SELECTION BIASES, AND HOST GALAXY PROPERTIES , 2016, 1608.05890.

[25]  M. Bershady,et al.  SDSS IV MaNGA – spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs , 2016, 1605.07189.

[26]  L. Fan,et al.  The most-luminous heavily-obscured quasars have a high merger fraction: morphological study of WISE-selected hot dust-obscured galaxies , 2016, 1605.00661.

[27]  K. Schawinski,et al.  A NEW POPULATION OF COMPTON-THICK AGNs IDENTIFIED USING THE SPECTRAL CURVATURE ABOVE 10 keV , 2016, 1604.07825.

[28]  S. Ellison,et al.  The star formation rates of active galactic nuclei host galaxies , 2016, 1601.03349.

[29]  V. Wild,et al.  Shape asymmetry : a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages , 2015, 1512.02000.

[30]  K. Jahnke,et al.  DO THE MOST MASSIVE BLACK HOLES AT z = 2 GROW VIA MAJOR MERGERS? , 2015, 1510.08461.

[31]  J. Trump,et al.  ARE COMPTON-THICK AGNs THE MISSING LINK BETWEEN MERGERS AND BLACK HOLE GROWTH? , 2015, 1509.03629.

[32]  Kevin Schawinski,et al.  Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ∼105 yr , 2015 .

[33]  T. Quinn,et al.  Comparison of black hole growth in galaxy mergers with gasoline and ramses , 2015, 1508.02224.

[34]  A. Evans,et al.  MORPHOLOGY AND MOLECULAR GAS FRACTIONS OF LOCAL LUMINOUS INFRARED GALAXIES AS A FUNCTION OF INFRARED LUMINOSITY AND MERGER STAGE , 2016, 1605.05417.

[35]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies , 2015, 1507.04447.

[36]  S. Ellison,et al.  Galaxy pairs in the Sloan Digital Sky Survey – XII. The fuelling mechanism of low-excitation radio-loud AGN , 2015, 1504.06255.

[37]  K. Schawinski,et al.  MAJOR MERGERS HOST THE MOST-LUMINOUS RED QUASARS AT z ∼ 2: A HUBBLE SPACE TELESCOPE WFC3/IR STUDY , 2015, 1504.02111.

[38]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – X. Does gas content alter star formation rate enhancement in galaxy interactions? , 2015, 1503.05194.

[39]  L. Hernquist,et al.  Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation , 2015, 1501.03573.

[40]  T. Heckman,et al.  Triggering optical AGN: the need for cold gas, and the indirect roles of galaxy environment and interactions , 2014, 1411.5031.

[41]  J. Silverman,et al.  CHANGING IONIZATION CONDITIONS IN SDSS GALAXIES WITH ACTIVE GALACTIC NUCLEI AS A FUNCTION OF ENVIRONMENT FROM PAIRS TO CLUSTERS , 2014, 1410.0008.

[42]  M. Salvato,et al.  THE ROLE OF BARS IN AGN FUELING IN DISK GALAXIES OVER THE LAST SEVEN BILLION YEARS , 2014, 1409.2871.

[43]  F. Governato,et al.  Growth and activity of black holes in galaxy mergers with varying mass ratios , 2014, 1409.0004.

[44]  F. Fiore,et al.  Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions , 2014, 1406.7740.

[45]  O. Fèvre,et al.  LATE-STAGE GALAXY MERGERS IN COSMOS TO z ∼ 1 , 2014, 1406.2327.

[46]  S. Yi,et al.  Lifetime of merger features of equal-mass disk mergers , 2014, 1405.1807.

[47]  S. Satyapal,et al.  Galaxy pairs in the Sloan Digital Sky Survey – IX. Merger-induced AGN activity as traced by the Wide-field Infrared Survey Explorer , 2014, 1403.7531.

[48]  M. Jarvis,et al.  The wide-field infrared survey explorer properties of complete samples of radio-loud active galactic nucleus , 2014 .

[49]  V. Wild,et al.  Morphologies of z ∼ 0.7 AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity , 2014, 1401.5477.

[50]  J. Trump,et al.  CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS , 2014, 1401.2455.

[51]  M. Jarvis,et al.  The WISE properties of complete samples of radio-loud AGN , 2013, 1308.4843.

[52]  S. Ellison,et al.  Galaxy pairs in the Sloan Digital Sky Survey – VIII. The observational properties of post-merger galaxies , 2013, 1308.3707.

[53]  T. Quinn,et al.  THE RELATIVE ROLE OF GALAXY MERGERS AND COSMIC FLOWS IN FEEDING BLACK HOLES , 2013, 1307.0856.

[54]  F. J. Carrera,et al.  Uncovering obscured luminous AGN with WISE , 2013, 1305.7237.

[55]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – VI. The orbital extent of enhanced star formation in interacting galaxies , 2013, 1305.1595.

[56]  Alessandro Caccianiga,et al.  The merger fraction of active and inactive galaxies in the local Universe through an improved non-parametric classification , 2013, 1303.0036.

[57]  M. Blanton,et al.  PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2 , 2013, 1302.2920.

[58]  Buell T. Jannuzi,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. II. PROPERTIES OF WISE-SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BOÖTES FIELD , 2012, 1209.6055.

[59]  E. Treister,et al.  MAJOR GALAXY MERGERS ONLY TRIGGER THE MOST LUMINOUS ACTIVE GALACTIC NUCLEI , 2012, 1209.5393.

[60]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – V. Tracing changes in star formation rate and metallicity out to separations of 80 kpc , 2012, 1207.4791.

[61]  M. Villar-Martin,et al.  The importance of galaxy interactions in triggering type II quasar activity , 2012, 1207.3260.

[62]  K. Schawinski,et al.  Heavily obscured quasar host galaxies at z ∼ 2 are discs, not major mergers , 2012, 1206.4063.

[63]  E. Wright,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS , 2012, 1205.0811.

[64]  D. Ballantyne,et al.  A TALE OF TWO POPULATIONS: THE CONTRIBUTION OF MERGER AND SECULAR PROCESSES TO THE EVOLUTION OF ACTIVE GALACTIC NUCLEI , 2012, 1203.5117.

[65]  Richard Mushotzky,et al.  UNDERSTANDING DUAL ACTIVE GALACTIC NUCLEUS ACTIVATION IN THE NEARBY UNIVERSE , 2012, 1201.2944.

[66]  T. Heckman,et al.  On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.

[67]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[68]  D. Elbaz,et al.  AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES , 2011, 1111.0987.

[69]  Kirpal Nandra,et al.  CANDELS: CONSTRAINING THE AGN–MERGER CONNECTION WITH HOST MORPHOLOGIES AT z ∼ 2 , 2011, 1109.2588.

[70]  M. Blanton,et al.  THE NATURE OF LINER-LIKE EMISSION IN RED GALAXIES , 2011, 1109.1280.

[71]  L. Ho,et al.  THE IMPACT OF GALAXY INTERACTIONS ON ACTIVE GALACTIC NUCLEUS ACTIVITY IN zCOSMOS , 2011, 1109.1292.

[72]  G. Barro,et al.  Are luminous radio-loud active galactic nuclei triggered by galaxy interactions? , 2011, 1109.0021.

[73]  David R. Patton,et al.  Galaxy pairs in the Sloan Digital Sky Survey - IV: Interactions trigger AGN , 2011, 1108.2711.

[74]  L. Kewley,et al.  THE METALLICITY EVOLUTION OF INTERACTING GALAXIES , 2011, 1107.0001.

[75]  P. Tissera,et al.  Chemical evolution during gas-rich galaxy interactions , 2011, 1106.4556.

[76]  Yue Shen,et al.  ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION , 2011, 1104.0951.

[77]  M. Blanton,et al.  PRIMUS: ENHANCED SPECIFIC STAR FORMATION RATES IN CLOSE GALAXY PAIRS , 2010, 1012.1324.

[78]  Takamitsu Miyaji,et al.  THE BULK OF THE BLACK HOLE GROWTH SINCE z ∼ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER–AGN CONNECTION , 2010, 1009.3265.

[79]  R. Morganti,et al.  The optical morphologies of the 2 Jy sample of radio galaxies: evidence for galaxy interactions , 2010, 1008.2683.

[80]  L. Kewley,et al.  METALLICITY GRADIENTS AND GAS FLOWS IN GALAXY PAIRS , 2010, 1008.2204.

[81]  L. Trouille,et al.  THE OPTX PROJECT. IV. HOW RELIABLE IS [O iii] AS A MEASURE OF AGN ACTIVITY? , 2010, 1008.1582.

[82]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[83]  S. Veilleux,et al.  MERGING AND CLUSTERING OF THE SWIFT BAT AGN SAMPLE , 2010, 1006.0228.

[84]  M. Montuori,et al.  The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers , 2010, 1003.1374.

[85]  Roberto G. Abraham,et al.  A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.2401.

[86]  Joel R. Primack,et al.  The effect of mass ratio on the morphology and time-scales of disc galaxy mergers: Effect of mass ratio on merger morphology , 2009, 0912.1590.

[87]  Joel R. Primack,et al.  The effect of gas fraction on the morphology and time-scales of disc galaxy mergers , 2009, 0912.1593.

[88]  T. Tal,et al.  THE FREQUENCY OF TIDAL FEATURES ASSOCIATED WITH NEARBY LUMINOUS ELLIPTICAL GALAXIES FROM A STATISTICALLY COMPLETE SAMPLE , 2009, 0908.1382.

[89]  C. Lintott,et al.  Galaxy Zoo: the properties of merging galaxies in the nearby Universe – local environments, colours, masses, star formation rates and AGN activity , 2009, 0903.5057.

[90]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[91]  J. Trump,et al.  ACTIVE GALACTIC NUCLEUS HOST GALAXY MORPHOLOGIES IN COSMOS , 2009 .

[92]  V. Wild,et al.  THE LOPSIDEDNESS OF PRESENT-DAY GALAXIES: CONNECTIONS TO THE FORMATION OF STARS, THE CHEMICAL EVOLUTION OF GALAXIES, AND THE GROWTH OF BLACK HOLES , 2008, 0809.3310.

[93]  J. Trump,et al.  AGN Host Galaxy Morphologies in COSMOS , 2008, 0809.0309.

[94]  D. Patton,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOSITY DEPENDENCE OF THE GALAXY MERGER RATE , 2022 .

[95]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[96]  G. Kauffmann,et al.  Interactions, star formation and AGN activity , 2007, 0712.0383.

[97]  R. Somerville,et al.  The effect of galaxy mass ratio on merger-driven starbursts , 2007, 0709.3511.

[98]  M. Geller,et al.  Minor Galaxy Interactions: Star Formation Rates and Galaxy Properties , 2007, astro-ph/0703729.

[99]  F. Combes,et al.  Star formation efficiency in galaxy interactions and mergers: a statistical study , 2007, astro-ph/0703212.

[100]  D. Lambas,et al.  Active Galactic Nuclei and Galaxy Interactions , 2007 .

[101]  G. Rieke,et al.  Spitzer Power-Law Active Galactic Nucleus Candidates in the Chandra Deep Field-North , 2007, astro-ph/0701698.

[102]  D. Lambas,et al.  AGNs and galaxy interactions , 2007, astro-ph/0701192.

[103]  C. Conselice,et al.  AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1 , 2006, astro-ph/0607272.

[104]  P. Hopkins,et al.  Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas , 2006, astro-ph/0603180.

[105]  S. Ravindranath,et al.  AGN Host Galaxies at z ~ 0.4-1.3: Bulge-dominated and Lacking Merger-AGN Connection , 2005, astro-ph/0507091.

[106]  S. Colombi,et al.  Spectral and morphological properties of quasar hosts in smoothed particle hydrodynamics simulations of active galactic nucleus feeding by mergers , 2005 .

[107]  S. Colombi,et al.  Spectral and morphological properties of quasar hosts in SPH simulations of AGN feeding by mergers , 2005, astro-ph/0504394.

[108]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[109]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[110]  P. Alexander,et al.  Star formation in close pairs selected from the Sloan Digital Sky Survey , 2004, astro-ph/0407289.

[111]  Eugene A. Magnier,et al.  The Elixir System: Data Characterization and Calibration at the Canada‐France‐Hawaii Telescope , 2004 .

[112]  D. Lambas,et al.  Galaxy pairs in the 2dF survey ¿ II. Effects of interactions on star formation in groups and clusters , 2004, astro-ph/0401455.

[113]  P. Madau,et al.  A New Nonparametric Approach to Galaxy Morphological Classification , 2003, astro-ph/0311352.

[114]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[115]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[116]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[117]  J. Hutchings,et al.  Optical images of quasars and radio galaxies , 1988 .

[118]  J. MacKenty,et al.  Extended emission-line regions around QSOs , 1987 .

[119]  W. Keel,et al.  The effects of interactions on spiral galaxies. I - Nuclear activity and star formation , 1985 .

[120]  B. Balick,et al.  Low-redshift quasars as the active nuclei of cosmologically distant interacting galaxies - A spectroscopic investigation , 1984 .

[121]  R. Becker,et al.  Evidence for Quasar Activity Triggered by Galaxy Mergers in HST Observations of Dust-reddened Quasars , 2007, 0709.2805.