Mass–radius curve for extrasolar Earth-like planets and ocean planets

[1]  F. Mauer,et al.  Isothermal equations of state for H2O‐VII and D2O‐VII , 1982 .

[2]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[3]  P. Richet,et al.  Thermal expansion of forsterite up to the melting point , 1996 .

[4]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[5]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[6]  Ross,et al.  Shock temperatures and melting of iron at Earth core conditions. , 1993, Physical review letters.

[7]  David J. Stevenson,et al.  Life-sustaining planets in interstellar space? , 1999, Nature.

[8]  D. Rouan,et al.  Exoplanet detection capability of the COROT space mission , 2003 .

[9]  Michel Mayor,et al.  An extrasolar planetary system with three Neptune-mass planets , 2006, Nature.

[10]  D. Tozer The present thermal state of the terrestrial planets , 1972 .

[11]  M. Marley,et al.  Further investigations of random models of Uranus and Neptune , 2000 .

[12]  O. Kuskov,et al.  Core Sizes and Internal Structure of Earth's and Jupiter's Satellites , 2001 .

[13]  T. Guillot,et al.  Orbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets , 1998, astro-ph/9801292.

[14]  R. Boehler Temperatures in the Earth's core from melting-point measurements of iron at high static pressures , 1993, Nature.

[15]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[16]  M. J. Gillan,et al.  Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations , 2001, cond-mat/0107307.

[17]  R. Boehler Melting of the FeFeO and the FeFeS systems at high pressure: Constraints on core temperatures , 1992 .

[18]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[19]  W. Anderson,et al.  Shock temperature and melting in iron sulfides at core pressures , 1996 .

[20]  W. Däppen Atoms and Molecules , 2002 .

[21]  M. Javoy Chemical earth models , 1999 .

[22]  H. Mao,et al.  Static compression of H2O-ice to 128 GPa (1.28 Mbar) , 1987, Nature.

[23]  S. Sutton,et al.  Stability field and thermal equation of state of ε-iron determined by synchrotron X-ray diffraction in a multianvil apparatus , 2001 .

[24]  R. Boehler,et al.  Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell , 2004 .

[25]  R. Cohen,et al.  Composition and temperature of Earth's inner core , 1997 .

[26]  K. Rice,et al.  Protostars and Planets V , 2005 .

[27]  T. Duffy,et al.  Phase stability and density of FeS at high pressures and temperatures: implications for the interior structure of Mars , 2001 .

[28]  O. Anderson,et al.  Thermoelastic parameters for six minerals at high temperature , 1991 .

[29]  O. Mishima,et al.  Melting curve of ice VII , 1978 .

[30]  D. Lide Handbook of Chemistry and Physics , 1992 .

[31]  Willy Benz,et al.  The strange density of Mercury - Theoretical considerations , 1988 .

[32]  D. L. Anderson Tectonics and composition of Venus , 1980 .

[33]  M. Gillan,et al.  First principles calculations on crystalline and liquid iron at Earth's core conditions , 1997 .

[34]  J. Poirier Physical properties of the Earth's core , 1994 .

[35]  H. Mao,et al.  Thermal expansivity, bulk modulus, and melting curve of H2O–ice VII to 20 GPa , 1993 .

[36]  W. Anderson,et al.  An equation of state for liquid iron and implications for the Earth's core , 1994 .

[37]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[38]  S. Solomon Formation, history and energetics of cores in the terrestrial planets , 1979 .

[39]  I. Jackson Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal , 1998 .

[40]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[41]  C. Sotin,et al.  Internal structure and dynamics of the large icy satellites , 2004 .

[42]  H. F. Astrophysics,et al.  Internal structure of massive terrestrial planets , 2005, astro-ph/0511150.

[43]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[44]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[45]  T. Irifune An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle , 1987 .

[46]  R. Jeanloz,et al.  The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth's Center , 1987, Science.

[47]  B. Fegley,et al.  A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .

[48]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[49]  H. Mao,et al.  Elasticity of forsterite to 16 GPa and the composition of the upper mantle , 1995, Nature.

[50]  D. Stevenson,et al.  The interior of Neptune , 1995 .

[51]  Y. Fei,et al.  Constraining the equation of state of fluid H , 2002 .

[52]  M. Deleuil,et al.  Searching for exosolar planets with the COROT space mission , 1999 .

[53]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[54]  Gang Zhao,et al.  Chemical abundances of 22 extrasolar planet host stars , 2005 .

[55]  Boehler,et al.  Solidus of Earth's deep mantle , 1998, Science.

[56]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[57]  Jack J. Lissauer,et al.  Giant Planet Formation , 2010, 1006.5486.

[58]  M. Javoy The integral enstatite chondrite model of the earth , 1995 .