Defect mitigation and root cause studies in IMEC's 14nm half-pitch chemo-epitaxy DSA flow

High defect density in thermodynamics driven DSA flows has been a major cause of concern for a while and several questions have been raised about the relevance of DSA in high volume manufacturing. The major questions raised in this regard are: 1. What is the intrinsic level of DSA-induced defects, 2. Can we isolate the DSA-induced defects from the other processes-induced defects, 3. How much do the DSA materials contribute to the final defectivity and can this be controlled, 4. How can we understand the root causes of the DSA-induced defects, their kinetics of annihilation and finally, 5. Can we have block co-polymer anneal durations that are compatible with standard CMOS fabrication techniques (in the range of minutes) with low defect levels. This manuscript addresses these important questions and identifies the issues and the level of control needed to achieve a stable DSA defect performance.