Highly Symmetric Expanders

Expander graphs are relevant to theoretical computer science in addition to the construction of high-performance switching networks. In communication network applications, a high degree of symmetry in the underlying topology is often advantageous, as it may reduce the complexity of designing and analyzing switching and routing algorithms. We give explicit constructions of expander graphs that are highly symmetric. In particular, we construct infinite families of Ramanujan graphs with large guarantees on the orders of their automorphism groups. Although nonlinear, our expander graphs are within a constant factor of the size of the smallest graphs exhibiting the same expansion properties. This work generalizes and extends in several directions a previous explicit construction of expander graphs based on finite projective spaces due to Alon.

[1]  Leo Dorst,et al.  Geometric Algebra , 2019, Computer Vision, A Reference Guide.

[2]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[3]  Alan M. Frieze,et al.  Existence and Construction of Edge-Disjoint Paths on Expander Graphs , 1994, SIAM J. Comput..

[4]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[5]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[6]  Alan M. Frieze,et al.  Existence and construction of edge disjoint paths on expander graphs , 1992, STOC '92.

[7]  Michael Sipser,et al.  Expanders, Randomness, or Time versus Space , 1988, J. Comput. Syst. Sci..

[8]  Marc Snir,et al.  A Unified Theory of Interconnection Network Structure , 1986, Theor. Comput. Sci..

[9]  Noga Alon,et al.  Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..

[10]  N. Alon Eigenvalues and expanders , 1986, Comb..

[11]  Béla Bollobás,et al.  Random Graphs , 1985 .

[12]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[13]  Maria M. Klawe,et al.  Non-existence of one-dimensional expanding graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[14]  Joseph JáJá,et al.  Time-space tradeoffs for some algebraic problems , 1980, STOC '80.

[15]  Z. Galil,et al.  Explicit constructions of linear size superconcentrators , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[16]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[17]  Harold Abelson,et al.  A Note on Time-Space Tradeoffs for Computing Continuous Functions , 1979, Inf. Process. Lett..

[18]  Martin Tompa,et al.  Time-space tradeoffs for computing functions, using connectivity properties of their circuits , 1978, J. Comput. Syst. Sci..

[19]  Robert E. Tarjan,et al.  Time-space trade-offs in a pebble game , 1977, JACM.

[20]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[21]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..

[22]  Steven Roman,et al.  A Problem of Zarankiewicz , 1975, J. Comb. Theory, Ser. A.

[23]  F. Bien Constructions of telephone networks by group representations , 1989 .

[24]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[25]  A. Selman Structure in Complexity Theory , 1986, Lecture Notes in Computer Science.

[26]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[27]  Oliver Vornberger,et al.  The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..

[28]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[29]  M. Murty Ramanujan Graphs , 1965 .