Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps

This article illustrates usage of the ramps R package, which implements the reparameterized and marginalized posterior sampling (RAMPS) algorithm for complex Bayesian geostatistical models. The RAMPS methodology allows joint modeling of areal and point-source data arising from the same underlying spatial process. A reparametrization of variance parameters facilitates slice sampling based on simplexes, which can be useful in general when multiple variances are present. Prediction at arbitrary points can be made, which is critical in applications where maps are needed. Our implementation takes advantage of sparse matrix operations in the Matrix package and can provide substantial savings in computing time for large datasets. A user-friendly interface, similar to the nlme mixed effects models package, enables users to analyze datasets with little programming effort. Support is provided for numerous spatial and spatiotemporal correlation structures, user-defined correlation structures, and non-spatial random effects. The package features are illustrated via a synthetic dataset of spatially correlated observation distributed across the state of Iowa, USA.

[1]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[2]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[3]  David R. Cox,et al.  Some algebra and geometry for hierarchical models, applied to diagnostics , 1998 .

[4]  Mary Kathryn Cowles,et al.  Reparameterized and Marginalized Posterior and Predictive Sampling for Complex Bayesian Geostatistical Models , 2009 .

[5]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[6]  Yuefan Deng,et al.  New trends in high performance computing , 2001, Parallel Computing.

[7]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[8]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[9]  Brian J. Smith,et al.  boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference , 2007 .

[10]  Bradley P. Carlin,et al.  Re-considering the variance parameterization in multiple precision models , 2007 .

[11]  Kurt Hornik,et al.  Escaping RGBland: Selecting colors for statistical graphics , 2009, Comput. Stat. Data Anal..

[12]  Bradley P. Carlin,et al.  Structured Markov Chain Monte Carlo , 2000 .

[13]  Robert A. van de Geijn,et al.  High-performance implementation of the level-3 BLAS , 2008, TOMS.

[14]  Brian D. Ripley,et al.  geoRglm: A Package for Generalised Linear Spatial Models , 2002 .

[15]  Edzer Pebesma,et al.  GSTAT: a program for geostatistical modelling, prediction and simulation , 1998 .

[16]  Bradley P Carlin,et al.  spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. , 2007, Journal of statistical software.

[17]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[18]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[19]  Mary Kathryn Cowles,et al.  Correlating point‐referenced radon and areal uranium data arising from a common spatial process , 2007 .

[20]  Shaowen Wang,et al.  Parallelizing MCMC for Bayesian spatiotemporal geostatistical models , 2007, Stat. Comput..

[21]  T. Gneiting Correlation functions for atmospheric data analysis , 1999 .