The role of dispersal and demography in determining the efficacy of marine reserves

Marine reserves are rapidly becoming an important tool for protection and recovery of depleted marine populations. However, the relative value of reserves to particular species is strongly dependent on its life history and behavior. We present a general conceptual framework for considering dispersal in simple demographic models. This framework includes transition matrices that consist of two age-structured models connected by transition probabilities for general migration, ontogenetic shifts, and recruitment in both a reserve and an unprotected area. We show that life history characteristics and perturbation analysis can be used to predict changes in growth rate due to a decrease in adult mortality resulting from a marine reserve for different levels and types of dispersal. Reserves enhanced growth rate for all species irrespective of net dispersal between the reserve and surrounding matrix habitat, but the efficacy of reserves relative to catch reduction depended significantly on the magnitude and sign of net dispersal across the reserve boundary. Patterns of reserve efficacy across different dispersal types were strongly species specific. Given the paucity of spatially explicit data for many marine systems and species, this simple approach represents a first step in applying life history information to advance current theory and provide practical considerations for marine reserve management. Resume : Les reserves marines sont vite en train de devenir des outils importants pour la protection et la recuperation des populations marines decimees. Cependant, la valeur relative des reserves pour une espece en particulier depend de son cycle biologique et de son comportement. Nous presentons un cadre conceptuel general pour examiner la disper- sion dans des modeles demographiques simples. Ce cadre comprend des matrices de transition qui consistent en deux modeles structures d'apres l'âge relies par des probabilites de transition pour la migration generale, les changements ontogeniques et le recrutement dans une zone de reserve et dans une zone sans protection. Nous montrons que les caracteristiques demographiques et l'analyse de perturbation peuvent servir a predire les changements du taux de crois- sance causes par un declin de la mortalite des adultes associe a la presence d'une reserve marine pour divers degres et types de dispersion. Les reserves font augmenter le taux de croissance chez toutes les especes, quelle que soit la dis- persion nette entre la reserve et la matrice d'habitats avoisinants; cependant, l'efficacite de la reserve, par comparaison a une reduction des captures, depend de facon significative de l'importance et du signe de la dispersion nette a travers les frontieres de la reserve. Les patrons d'efficacite des reserves en fonction des types de dispersion varient fortement selon les especes. Etant donne le peu de donnees spatiales specifiques sur de nombreux systemes marins et especes de mer, cette approche simple represente un premier pas vers l'application des donnees demographiques pour ameliorer la theorie actuelle et pour fournir des informations pratiques pour la gestion des reserves marines. (Traduit par la Redaction) Gerber et al. 871

[1]  J. Bascompte,et al.  The influence of life history attributes and fishing pressure on the efficacy of marine reserves , 2002 .

[2]  W. Stockhausen,et al.  Joint effects of larval dispersal, population regulation, marine reserve design, and exploitation on production and recruitment in the Caribbean spiny lobster , 2000 .

[3]  D. Doak,et al.  Book Review: Quantitative Conservation biology: Theory and Practice of Population Viability analysis , 2004, Landscape Ecology.

[4]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[5]  P. Abrams,et al.  Introducing the symposium "Building on Beverton's legacy: life history variation and fisheries management" , 2005 .

[6]  M. Thiel,et al.  The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences , 2006 .

[7]  Hugh P. Possingham,et al.  Population models for marine reserve design: A retrospective and prospective synthesis , 2003 .

[8]  C. Pfister,et al.  Harvesting Red Sea Urchins: Recent Effects and Future Predictions , 1996 .

[9]  Charles A. Acosta,et al.  Spatially explicit dispersal dynamics and equilibrium population sizes in marine harvest refuges , 2002 .

[10]  James F. Quinn,et al.  Harvest Refugia in Marine Invertebrate Fisheries: Models and Applications to the Red Sea Urchin, Strongylocentrotus franciscanus , 1993 .

[11]  F. Coleman,et al.  Models to compare management options for a protogynous fish. , 2006, Ecological applications : a publication of the Ecological Society of America.

[12]  C. Roberts,et al.  Benefits beyond boundaries: the fishery effects of marine reserves , 2003 .

[13]  Alan Hastings,et al.  The effects of dispersal patterns on marine reserves: does the tail wag the dog? , 2002, Theoretical population biology.

[14]  M. Tundi Agardy,et al.  Advances in marine conservation: the role of marine protected areas , 1994 .

[15]  P. Kareiva,et al.  Recovery and management options for spring/summer chinook salmon in the Columbia River basin. , 2000, Science.

[16]  P. H. Flournoy Marine Protected Areas: Tools for Sustaining Ocean Ecosystems , 2003 .

[17]  Tom Polacheck,et al.  YEAR AROUND CLOSED AREAS AS A MANAGEMENT TOOL , 1990 .

[18]  S. Hooker,et al.  Marine Reserves as a Tool for Ecosystem-Based Management: The Potential Importance of Megafauna , 2004 .

[19]  G. Eckert,et al.  DISPERSAL POTENTIAL OF MARINE INVERTEBRATES IN DIVERSE HABITATS , 2003 .

[20]  Jane Lubchenco,et al.  MARINE RESERVES ARE NECESSARY BUT NOT SUFFICIENT FOR MARINE CONSERVATION , 1998 .

[21]  Hal Caswell,et al.  Demography of the endangered North Atlantic right whale , 2001, Nature.

[22]  Octavio Aburto-Oropeza,et al.  A General Model for Designing Networks of Marine Reserves , 2002, Science.

[23]  J Timothy Wootton,et al.  A Metapopulation Model of the Peregrine Falcon in California: Viability and Management Strategies. , 1992, Ecological applications : a publication of the Ecological Society of America.

[24]  L. Crowder,et al.  LIFE HISTORIES AND ELASTICITY PATTERNS: PERTURBATION ANALYSIS FOR SPECIES WITH MINIMAL DEMOGRAPHIC DATA , 2000 .

[25]  S. Reilly Observed and Maximum Rates of Increase in Gray Whales, Eschrichtius robustus , 2004 .

[26]  Botsford,et al.  Dependence of sustainability on the configuration of marine reserves and larval dispersal distance , 2001 .

[27]  John L. Largier,et al.  AVOIDING CURRENT OVERSIGHTS IN MARINE RESERVE DESIGN , 2003 .

[28]  L. Crowder,et al.  Life table analysis of long-lived marine species with implications for conservation and management , 1999 .

[29]  L. Gerber,et al.  The use of demographic sensitivity analysis in marine species conservation planning , 2004 .

[30]  Y. Sadovy,et al.  Synopsis of biological data on the Nassau grouper, Ephinephelus striatus (Bloch 1792), and the Jewfish, E. itajara (Lichtenstein, 1822) , 1999 .

[31]  Larry B. Crowder,et al.  Predicting the impact of Turtle Excluder Devices on loggerhead sea turtle populations , 1994 .

[32]  D. Doak Source‐Sink Models and the Problem of Habitat Degradation: General Models and Applications to the Yellowstone Grizzly , 1995 .

[33]  C. Walters,et al.  The use of marine protected areas for conservation of lingcod (Ophiodon elongatus) , 2000 .

[34]  A. Hastings,et al.  PRINCIPLES FOR THE DESIGN OF MARINE RESERVES , 2003 .

[35]  E. Sala,et al.  Spawning aggregations and reproductive behavior of reef fishes in the Gulf of California , 2003 .