A Number-Theoretic Error-Correcting Code

In this paper we describe a new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem. While by far less efficient than Turbo codes, the proposed ECC happens to be more efficient than some established ECCs for certain sets of parameters.

[1]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[2]  Pierre Dusart,et al.  The kth prime is greater than k(ln k + ln ln k - 1) for k >= 2 , 1999, Math. Comput..

[3]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[4]  Jacques Stern,et al.  A New Public-Key Cryptosystem , 1997, EUROCRYPT.

[5]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[6]  Brigitte Vallée,et al.  Gauss' Algorithm Revisited , 1991, J. Algorithms.

[7]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[8]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[9]  Jacques Stern,et al.  CryptoComputing with Rationals , 2002, Financial Cryptography.

[10]  Jacques Stern,et al.  Linear Bandwidth Naccache-Stern Encryption , 2008, SCN.

[11]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[14]  Toby Berger,et al.  Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.