Beam propagation in a linear or nonlinear lens-like medium usingABCD ray matrices: the method of moments

We derive exact expressions for the evolution of the second order moment of the intensity distribution of an arbitrary beam propagating in a nonlinear Kerr medium with a quadratic index profile. The results can be recast in terms of theABCD matrix formalism after introducing a generalized complex radius of curvature,Q(z). Various definitions of the beam quality factor are introduced. Numerical simulations reveal the interest of this approach.

[1]  C. Paré,et al.  Nonlinear radiation modes connected to parabolic graded-index profiles by the lens transformation , 1991 .

[2]  Anthony E. Siegman,et al.  Defining the effective radius of curvature for a nonideal optical beam , 1991 .

[3]  B. Suydam Effect of refractive-index nonlinearity on the optical quality of high-power laser beams , 1975 .

[4]  Yuen-Ron Shen,et al.  Self-focusing: Experimental , 1975 .

[5]  Rosario Martínez-Herrero,et al.  Beam characterization through active media , 1991 .

[6]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[7]  Gagnon,et al.  Exact solutions of the cubic and quintic nonlinear Schrödinger equation for a cylindrical geometry. , 1989, Physical review. A, General physics.

[8]  Michael D. Feit,et al.  Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams , 1988 .

[9]  Claude Pare,et al.  Custom laser resonators using graded-phase mirrors , 1992 .

[10]  D. R. Heatley,et al.  Stability of the higher-bound states in a saturable self-focusing medium. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[11]  C. Paré,et al.  Self-focusing of Gaussian beams: an alternate derivation. , 1983, Applied optics.

[12]  L. Gagnon Exact solutions for optical wave propagation including transverse effects , 1990 .

[13]  R. Joseph,et al.  Propagation in cylindrically symmetric two-dimensional nonlinear media , 1991 .

[14]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[15]  Yijiang Chen Self-trapped beams with cylindrical symmetry , 1991 .

[16]  A. Yariv,et al.  The application of Gaussian beam. Formalism to optical propagation in nonlinear media , 1978 .

[17]  S. N. Vlasov,et al.  Averaged description of wave beams in linear and nonlinear media (the method of moments) , 1971 .

[18]  Hermann A. Haus,et al.  HIGHER ORDER TRAPPED LIGHT BEAM SOLUTIONS , 1966 .

[19]  R. Alfano,et al.  Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. , 1988, Optics letters.

[20]  F. Tappert,et al.  Moment theory of self-trapped laser beams with nonlinear saturation , 1975 .

[21]  Mj Martin Bastiaans Second-order moments of the Wigner distribution function in first-order optical systems , 1988 .

[22]  E. Sudarshan,et al.  Partially coherent beams and a generalized ABCD-law , 1988 .

[23]  P. Bélanger,et al.  Beam propagation and the ABCD ray matrices. , 1991, Optics letters.

[24]  F. Gori,et al.  The change of width for a partially coherent beam on paraxial propagation , 1991 .

[25]  Mietek Lisak,et al.  Self-trapped cylindrical laser beams , 1979 .

[26]  Friberg,et al.  Partially coherent propagation-invariant beams: Passage through paraxial optical systems. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[27]  E. Keren,et al.  Generalized beam parameters and transformation laws for partially coherent light. , 1988, Applied optics.

[28]  P. Bélanger,et al.  On an extremum property of gaussian beams and gaussian pulses , 1988 .