Review and future challenges in snow avalanche risk analysis

Background Snow avalanches pose a major threat to alpine communities because they affect safety in villages and on traffic routes. Therefore, dealing with avalanche danger has a long tradition in Alpine countries. In most countries, avalanches contribute only to a small degree to the overall risk of a country. For Switzerland, for example, avalanche risk represents only 2% of all risks (BABS, 2003). Snow avalanche formation, geomorphology and land use planning Snow avalanches are a type of fast-moving mass movement. They can also contain rocks, soil, vegetation or ice. Avalanche size is classified according to its destructive power (McClung and Schaerer, 2006). A medium-sized slab avalanche may involve 10,000 m 3 of snow, equivalent to a mass of about 2,000 tons (snow density 200 kg/m 3 ). Avalanche speeds vary between 50 and 200 km/h for large dry snow avalanches, whereas wet slides are denser and slower (20–100 km/h). If the avalanche path is steep, dry snow avalanches generate a powder cloud. There are different types of snow avalanches (Table 5.1), and in particular two types of release: loose snow avalanches and slab avalanches. Loose snow avalanches start from a point, in a relatively cohesionless surface layer of either dry or wet snow. Initial failure is analogous to the rotational slip of cohesionless sands or soil, but occurs within a small volume ( 3 ) in comparison to much larger initiation volumes in soil slides.

[1]  D. Mcclung,et al.  The Avalanche Handbook , 1993 .

[2]  Betty Sovilla,et al.  Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne test site , 2008 .

[3]  Suzanne Lacasse,et al.  A conceptual framework for quantitative estimation of physical vulnerability to landslides , 2008 .

[4]  M. Barbolini,et al.  Snow avalanche risk assessment and mapping : A new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform , 2008 .

[5]  R. Ward Geomorphological Evidence of Avalanche Activity in Scotland , 1985 .

[6]  Sven Fuchs,et al.  Natural hazard risk depending on the variability of damage potential , 2006 .

[7]  Kailash C. Kapur Risk Modeling, Assessment, and Management, 3rd edition , 2010 .

[8]  F. Savi,et al.  Effects of Release Conditions Uncertainty on Avalanche Hazard Mapping , 2002 .

[9]  Thomas Glade,et al.  Evolution of natural risk: research framework and perspectives , 2005 .

[10]  Markus Gächter,et al.  Risikoanalyse und Kostenwirksamkeit bei der Massnahmenplanung – Beispiel Diesbach | Risk analysis and cost efficiency of measure planning – the example of Diesbach , 2002 .

[11]  Martin Schneebeli,et al.  Temporal Trend and Spatial Distribution of Avalanche Activity during the Last 50 Years in Switzerland , 2002 .

[12]  M. Holub,et al.  Benefits Of Local Structural Protection ToMitigate Torrent-related Hazards , 2008 .

[13]  P. Bartelt,et al.  Production and decay of random kinetic energy in granular snow avalanches , 2009, Journal of Glaciology.

[14]  Rudolf Sailer,et al.  Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar , 2002 .

[15]  R. Fell Landslide risk assessment and acceptable risk , 1994 .

[16]  G. Luzi,et al.  Remote sensing based retrieval of snow cover properties , 2008 .

[17]  A. Decaulne,et al.  Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords , 2006 .

[18]  Rudolf Sailer,et al.  Empirical Estimate Of Vulnerability RelationsFor Use In Snow Avalanche Risk Assessment , 2004 .

[19]  S. Cutter Vulnerability to environmental hazards , 1996 .

[20]  Gilbert F. White,et al.  Knowing better and losing even more: the use of knowledge in hazards management , 2001 .

[21]  Betty Sovilla,et al.  Measured shear rates in large dry and wet snow avalanches , 2009, Journal of Glaciology.

[22]  B. Salm,et al.  Flow, flow transition and runout distances of flowing avalanches , 1993, Annals of Glaciology.

[23]  Shin Ta Liu,et al.  Risk Modeling, Assessment, and Management , 1999, Technometrics.

[24]  Andreas Paul Zischg,et al.  Avalanche related damage potential - changes of persons and mobile values since the mid-twentieth century, case study Galtür , 2005 .

[25]  Susan L. Cutter,et al.  The Vulnerability of Science and the Science of Vulnerability , 2003 .

[26]  Keith W Hipel,et al.  Risk and Systems Theory , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[27]  M. Lehning,et al.  Inhomogeneous precipitation distribution and snow transport in steep terrain , 2008 .

[28]  D. Varnes Landslide hazard zonation: A review of principles and practice , 1984 .

[29]  Christopher J. Keylock,et al.  Snow avalanche impact pressure: vulnerability relations for use in risk assessment , 2001 .

[30]  David G. E. Liverman,et al.  Snow Avalanche Hazard in Canada – a Review , 2003 .

[31]  S. Kaplan,et al.  On The Quantitative Definition of Risk , 1981 .

[32]  Juergen Weichselgartner,et al.  Disaster mitigation: the concept of vulnerability revisited , 2001 .

[33]  Margreth Keiler,et al.  Development of the damage potential resulting from avalanche risk in the period 1950-2000, case study Galtür , 2004 .

[34]  Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt , 2007 .

[35]  Joern Birkmann,et al.  Measuring Vulnerability to Natural Hazards: towards disaster resilient societies , 2007 .

[36]  F. Savi,et al.  Risk assessment in avalanche-prone areas , 2004, Annals of Glaciology.

[37]  Jakob Rhyner,et al.  Dealing with the White Death: Avalanche Risk Management for Traffic Routes , 2009, Risk analysis : an official publication of the Society for Risk Analysis.

[38]  Andreas Paul Zischg,et al.  Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria , 2006 .

[39]  Kristján Jónasson,et al.  Avalanche hazard zoning in Iceland based on individual risk , 2004, Annals of Glaciology.

[40]  Rit Veðurstofu Íslands Estimation of avalanche risk , 2002 .

[41]  Betty Sovilla,et al.  Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site , 2008 .

[42]  P. Bartelt,et al.  Fluctuation-dissipation relations for granular snow avalanches , 2006 .

[43]  Thomas Glade,et al.  Quantitative risk analysis for landslides ‒ Examples from Bíldudalur, NW-Iceland , 2004 .

[44]  J. Schweizer ON THE PREDICTABILITY OF SNOW AVALANCHES , 2008 .

[45]  M. Schneebeli,et al.  Routing of canopy drip in the snowpack below a spruce crown , 1999 .

[46]  Chris Stethem,et al.  Snow Avalanche Hazards and Management in Canada: Challenges and Progress , 2002 .

[47]  Michael Bründl,et al.  Damage Potential and Losses Resulting from Snow Avalanches in Settlements of the Canton of Grisons, Switzerland , 2005 .

[48]  Building vulnerability related to floods and debris flows - case studies , 2006 .

[49]  Michael Bründl,et al.  Decision making tools for natural hazard risk management - Examples from Switzerland , 2009 .

[50]  C. Rixen,et al.  Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances , 2006 .

[51]  Ortwin Renn,et al.  A New Approach to Risk Evaluation and Management: Risk‐Based, Precaution‐Based, and Discourse‐Based Strategies 1 , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[52]  L. F. Smoll,et al.  Investigation of the origin and magnitude of debris flows from the Payhua Creek basin , Matucana area , Huarochirí Province , Perú , 2005 .

[53]  M. Schneebeli,et al.  Long‐term snow climate trends of the Swiss Alps (1931–99) , 2003 .

[54]  Johann Stötter,et al.  Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland , 2004 .

[55]  P. Bartelt,et al.  The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow , 2001, Annals of Glaciology.

[56]  J. Hübl,et al.  Towards an empirical vulnerability function for use in debris flow risk assessment , 2007 .

[57]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[58]  Paul M. B. Föhn,et al.  Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen , 1998 .

[59]  J. Schweizer,et al.  Snow avalanche formation , 2003 .

[60]  M. Becht Slope erosion processes in the Alps , 1995 .

[61]  Thomas Glade,et al.  Landslide Hazard and Risk: Issues, Concepts and Approach , 2012 .

[62]  Nigel Waters,et al.  Statistical runout modeling of snow avalanches using GIS in Glacier National Park, Canada , 2008 .

[63]  Challenges in defining acceptable risk levels , 2006 .

[64]  Christian Wilhelm Wirtschaftlichkeit im Lawinenschutz , 1996 .

[65]  P. Burlando,et al.  Field experiments and numerical modeling of mass entrainment in snow avalanches , 2006 .

[66]  Alexander Prokop,et al.  Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements , 2008 .