The VMC Survey - XIII : Type II Cepheids in the Large Magellanic Cloud

The VISTA survey of the Magellanic Clouds System (VMC) is collecting deep $K_\mathrm{s}$--band time--series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III survey. We present $J$ and $K_\mathrm{s}$ light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the $V$ magnitudes from the OGLE III survey, allowing us to build a variety of Period-Luminosity ($PL$), Period-Luminosity-Colour ($PLC$) and Period-Wesenheit ($PW$) relationships, including any combination of the $V, J, K_\mathrm{s}$ filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distance modulus, while an independent absolute calibration of the $PL(K_\mathrm{s})$ and the $PW(K_\mathrm{s},V)$ was derived on the basis of distances obtained from $Hubble Space Telescope$ parallaxes and Baade-Wesselink technique. When applied to the LMC and to the Galactic Globular Clusters hosting T2CEPs, these relations seem to show that: 1) the two population II standard candles RR Lyrae and T2CEPs give results in excellent agreement with each other; 2) there is a discrepancy of $\sim$0.1 mag between population II standard candles and Classical Cepheids when the distances are gauged in a similar way for all the quoted pulsators. However, given the uncertainties, this discrepancy is within the formal 1$\sigma$ uncertainties.

[1]  M. Catelán,et al.  Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud - III. Near-infrared study , 2009 .

[2]  Potsdam,et al.  Calibrating The Cepheid Period-Luminosity Relation From The Infrared Surface Brightness Technique I. The P-Factor, The Milky Way Relations, And A Universal K-Band Relation , 2011, 1109.2017.

[3]  B. Gibson,et al.  Tidal disruption of the Magellanic Clouds by the Milky Way , 1998, Nature.

[4]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[5]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[6]  B. Gibson,et al.  The disruption of nearby galaxies by the Milky Way , 1998, astro-ph/9808023.

[7]  Telescopio Nazionale Galileo,et al.  Metal abundances of RR Lyrae stars in the bar of the Large Magellanic Cloud , 2004, astro-ph/0405412.

[8]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[9]  L. Staveley-Smith,et al.  GALACTIC ALL-SKY SURVEY HIGH-VELOCITY CLOUDS IN THE REGION OF THE MAGELLANIC LEADING ARM , 2012, 1208.5583.

[10]  J. B. Marquette,et al.  Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) survey , 2012, 1202.5863.

[11]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[12]  B. Madore,et al.  MULTI-WAVELENGTH CHARACTERISTICS OF PERIOD–LUMINOSITY RELATIONS , 2011, 1111.6313.

[13]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[14]  M. Feast,et al.  Period–luminosity relations for type II Cepheids and their application , 2009, 0904.4701.

[15]  H. C. Harris A catalogue of field Type II Cepheids , 1985 .

[16]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[17]  A. Udalski,et al.  The distance to the Galactic Centre based on Population-II Cepheids and RR Lyrae stars , 2008, 0801.2652.

[18]  D. Kato The IRSF Magellanic Clouds Point Source Catalog , 2007 .

[19]  L. Staveley-Smith,et al.  A New Look at the Kinematics of Neutral Hydrogen in the Small Magellanic Cloud , 2003, astro-ph/0312223.

[20]  M. MarconiM. Di Criscienzo Updated pulsation models for BL Herculis stars , 2007 .

[21]  A. Bragaglia,et al.  Distance to the Large Magellanic Cloud: The RR Lyrae Stars* , 2000 .

[22]  N. Langer,et al.  Is there a mass discrepancy in the Cepheid binary OGLE-LMC-CEP0227? , 2011, 1110.6657.

[23]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[24]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[25]  B. Jiang,et al.  THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD , 2013, 1308.1474.

[26]  A. Gautschy On the Baade-Wesselink method , 1987 .

[27]  F. V. Leeuwen,et al.  Hipparcos, the New Reduction of the Raw Data , 2007 .

[28]  松永 典之 Stellar Pulsation : Challenges for Theory and Observation , 2009 .

[29]  E. Grebel,et al.  METALLICITY DISTRIBUTION FUNCTIONS OF THE OLD POPULATIONS OF THE MAGELLANIC CLOUDS FROM RR Lyrae STARS , 2011, 1111.6586.

[30]  K. Bekki,et al.  The Magellanic squall: gas replenishment from the Small to the Large Magellanic Cloud , 2007, 0706.3780.

[31]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[32]  K. Cook,et al.  Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud , 2004 .

[33]  F. Caputo Evolution of Population II stars , 1998 .

[34]  A. Walker The Large Magellanic Cloud and the distance scale , 2011, 1112.3171.

[35]  V. Ripepi,et al.  Magellanic Clouds stellar clusters. II. New B, V CM diagrams for 6 LMC and 10 SMC clusters , 2002 .

[36]  S. Cassisi,et al.  Synthetic properties of bright metal-poor variables. II. BL Her stars , 2007 .

[37]  M. Cioni,et al.  Magellanic Cloud Structure from Near-Infrared Surveys. I. The Viewing Angles of the Large Magellanic Cloud , 2001, astro-ph/0105339.

[38]  J. Nemec,et al.  Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars , 1994 .

[39]  M. Marconi,et al.  Pulsational Evidence for Mass Loss in NGC 1866 Cepheids , 2004 .

[40]  D. Minniti,et al.  Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. II. The extended sa , 2004, astro-ph/0609209.

[41]  Keith T. Noddle,et al.  The VISTA Science Archive , 2012, 1210.2980.

[42]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[43]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[44]  Peter B. Stetson,et al.  Hubble Space Telescope Snapshot Study of Variable Stars in Globular Clusters: The Inner Region of NGC 6441 , 2003, astro-ph/0305339.

[45]  Bangalore,et al.  Structure of the Large Magellanic Cloud from the Near Infrared magnitudes of Red Clump stars , 2013, 1301.7538.

[46]  J. Harris,et al.  The Star Formation History of the Small Magellanic Cloud , 2004 .

[47]  Michael W. Feast,et al.  The Luminosities and Distance Scales of Type II Cepheid and RR Lyrae variables , 2008, 0803.0466.

[48]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[49]  J. B. Marquette,et al.  The VMC Survey - X. Cepheids, RR Lyrae stars and binaries as probes of the Magellanic System's structure ⋆ , 2013, 1310.6849.

[50]  M. Feast,et al.  Period-luminosity relations of type II Cepheids in the Magellanic Clouds , 2010, 1012.0098.

[51]  Allan Sandage,et al.  Absolute Magnitude Calibrations of Population I and II Cepheids and Other Pulsating Variables in the Instability Strip of the Hertzsprung-Russell Diagram , 2006 .

[52]  E. Rosolowsky,et al.  A Statistical Investigation of H I in the Magellanic Bridge , 2004, astro-ph/0408259.

[53]  P. Kalberla,et al.  The four leading arms of the Magellanic Cloud system - Evidence for interaction with Milky Way disk and halo , 2012, 1208.4953.

[54]  P. Schipani,et al.  STEP: The VST survey of the SMC and the Magellanic Bridge. I. Overview and first results , 2014, 1405.1028.

[55]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[56]  M. Moretti,et al.  The VMC survey - VIII : First results for anomalous Cepheids , 2013, 1310.5967.

[57]  Toshihiko Tanabe,et al.  The period–luminosity relation for type II Cepheids in globular clusters , 2006, astro-ph/0606609.

[58]  E. Grebel,et al.  NEW OPTICAL REDDENING MAPS OF THE LARGE AND SMALL MAGELLANIC CLOUDS , 2011, 1104.2325.

[59]  James P. Emerson,et al.  VISTA data flow system: pipeline processing for WFCAM and VISTA , 2004, SPIE Astronomical Telescopes + Instrumentation.

[60]  Nicole Nesvacil,et al.  DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES , 2011, 1109.5631.

[61]  George Wallerstein,et al.  The Cepheids of Population II and Related Stars , 2002 .

[62]  C. D. Laney,et al.  A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.

[63]  D. Zaritsky,et al.  THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD , 2009, 0908.1422.

[64]  Richard de Grijs,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? III. THE SMALL MAGELLANIC CLOUD , 2014, 1504.00417.

[65]  Bright metal-poor variables: Why “Anomalous” Cepheids? , 2004, astro-ph/0405395.

[66]  G. Bono,et al.  Nonlinear investigation of the pulsational properties of RR Lyrae variables , 1997 .

[67]  J. B. Marquette,et al.  The VMC survey - V. First results for classical Cepheids , 2012, 1204.2273.

[68]  Denmark,et al.  Distances and ages of NGC 6397, NGC 6752 and 47 Tuc , 2003, astro-ph/0307016.

[69]  Joana M. Oliveira,et al.  The VMC survey - IV. The LMC star formation history and disk geometry from four VMC tiles , 2011, 1110.5852.

[70]  G. Wallerstein,et al.  THE POPULATION II CEPHEIDS. , 1984 .

[71]  A. Walker,et al.  CORS BAADE–WESSELINK DISTANCE TO THE LMC NGC 1866 BLUE POPULOUS CLUSTER , 2012, 1201.3478.

[72]  N. Nardetto,et al.  Calibrating the Cepheid Period-Luminosity relation from the infrared surface brightness technique II. The effect of metallicity, and the distance to the LMC , 2011, 1109.2016.

[73]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.