Independent degrees of freedom of dynamical systems

Numerical evidence is presented demonstrating the possibility of obtaining reduced equations of motion for dynamical systems in terms of a small number of variables. Some implications of these results are discussed.

[1]  V. A. Krasil’nikov,et al.  Atmospheric turbulence and radio-wave propagation , 1962 .

[2]  J. Lumley Stochastic tools in turbulence , 1970 .

[3]  R. Ash,et al.  Topics in stochastic processes , 1975 .

[4]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[5]  James H. Curry,et al.  A generalized Lorenz system , 1978 .

[6]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[7]  Jerry P. Gollub,et al.  A SUBHARMONIC ROUTE TO TURBULENT CONVECTION * , 1980 .

[8]  M. Giglio,et al.  Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations , 1981 .

[9]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[10]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[11]  Shien-Ming Wu,et al.  Time series and system analysis with applications , 1983 .

[12]  Stéphan Fauve,et al.  Two-parameter study of the routes to chaos , 1983 .

[13]  Z. Alexandrowicz,et al.  Fractal Dimension of Strange Attractors from Radius versus Size of Arbitrary Clusters , 1983 .

[14]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[15]  Peter W. Milonni,et al.  Dimensions and entropies in chaotic systems: Quantification of complex behavior , 1986 .

[16]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[17]  P. Cvitanović Universality in Chaos , 1989 .