Back Stable K-Theory Schubert Calculus
暂无分享,去创建一个
[2] Syu Kato. Loop structure on equivariant $K$-theory of semi-infinite flag manifolds , 2018, 1805.01718.
[3] J. Morse. Combinatorics of the K-theory of affine Grassmannians , 2009, 0907.0044.
[4] A. I. Molev,et al. Comultiplication Rules for the Double Schur Functions and Cauchy Identities , 2008, Electron. J. Comb..
[5] Shrawan Kumar. Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups , 2012, 1209.6422.
[6] Ezra Miller,et al. Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.
[7] Seung Jin Lee,et al. On the coproduct in affine Schubert calculus , 2019, 1906.08118.
[8] Alain Lascoux,et al. A Pieri formula in the Grothendieck ring of a flag bundle , 1994 .
[9] M. Goresky,et al. Equivariant cohomology, Koszul duality, and the localization theorem , 1997 .
[10] Michel Demazure,et al. Désingularisation des variétés de Schubert généralisées , 1974 .
[11] Anders Skovsted Buch. A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .
[12] Alexander Yong,et al. Stable Grothendieck polynomials and K-theoretic factor sequences , 2005 .
[13] T. Lam,et al. A conjectural Peterson isomorphism in K-theory , 2017, Journal of Algebra.
[14] William Fulton,et al. Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .
[15] Ezra Miller,et al. Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces , 2008, 0808.2785.
[16] Thomas Lam,et al. Back stable Schubert calculus , 2018, Compositio Mathematica.
[17] David Anderson. K-theoretic Chern class formulas for vexillary degeneracy loci , 2016, Advances in Mathematics.
[18] Tomoo Matsumura,et al. Determinantal and Pfaffian formulas of K-theoretic Schubert calculus , 2015 .
[19] Michel Brion. Positivity in the Grothendieck group of complex flag varieties , 2001 .
[20] Grothendieck classes of quiver varieties , 2001, math/0104029.
[21] A. Yong,et al. Schubert polynomials and quiver formulas , 2002, math/0211300.
[22] Anna Weigandt,et al. Bumpless pipe dreams and alternating sign matrices , 2020, J. Comb. Theory, Ser. A.
[23] C. Lenart. A K-theory version of Monk's formula and some related multiplication formulas , 2003 .
[24] Daoji Huang. Schubert Products for Permutations with Separated Descents. , 2021 .
[25] Diagonal degenerations of matrix Schubert varieties. , 2020, 2008.01717.
[26] Anne Schilling,et al. K-theory Schubert calculus of the affine Grassmannian , 2009, Compositio Mathematica.
[27] Travis Scrimshaw,et al. Colored five‐vertex models and Lascoux polynomials and atoms , 2019, Journal of the London Mathematical Society.
[28] Sergey Fomin,et al. Grothendieck polynomials and the Yang - Baxter equation , 1994 .
[29] Richard P. Stanley,et al. Some Combinatorial Properties of Schubert Polynomials , 1993 .
[30] William Fulton,et al. Schubert Polynomials in Types A and C , 2021 .
[31] Santhosh K. P. Kumar,et al. T-equivariant K-theory of generalized flag varieties. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[32] A. Knutson,et al. A K_T-deformation of the ring of symmetric functions , 2015, 1503.04070.
[33] Peter L. Guo,et al. Bumpless Pipedreams, Reduced Word Tableaux and Stanley Symmetric Functions , 2018, 1810.11916.
[35] Daoji Huang. Bijective Proofs of Monk's rule for Schubert and Double Schubert Polynomials with Bumpless Pipe Dreams , 2020, Electron. J. Comb..
[36] Thomas Lam,et al. Combinatorial Hopf algebras and K-homology of Grassmanians , 2007, 0705.2189.
[37] C. Lenart. Noncommutative Schubert Calculus and Grothendieck Polynomials , 1999 .
[38] Cristian Lenart,et al. Combinatorial Aspects of the K-Theory of Grassmannians , 2000 .
[39] M. Kashiwara,et al. Equivariant $K$-theory of affine flag manifolds and affine Grothendieck polynomials , 2006, math/0601563.