Back Stable K-Theory Schubert Calculus

We study the back stable K-theory Schubert calculus of the infinite flag variety. We define back stable (double) Grothendieck polynomials and double K-Stanley functions and establish coproduct expansion formulae. Applying work of Weigandt, we extend our previous results on bumpless pipedreams from cohomology toK-theory. We study finiteness and positivity properties of the ring of back stable Grothendieck polynomials, and divided difference operators in K-homology.

[2]  Syu Kato Loop structure on equivariant $K$-theory of semi-infinite flag manifolds , 2018, 1805.01718.

[3]  J. Morse Combinatorics of the K-theory of affine Grassmannians , 2009, 0907.0044.

[4]  A. I. Molev,et al.  Comultiplication Rules for the Double Schur Functions and Cauchy Identities , 2008, Electron. J. Comb..

[5]  Shrawan Kumar Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups , 2012, 1209.6422.

[6]  Ezra Miller,et al.  Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.

[7]  Seung Jin Lee,et al.  On the coproduct in affine Schubert calculus , 2019, 1906.08118.

[8]  Alain Lascoux,et al.  A Pieri formula in the Grothendieck ring of a flag bundle , 1994 .

[9]  M. Goresky,et al.  Equivariant cohomology, Koszul duality, and the localization theorem , 1997 .

[10]  Michel Demazure,et al.  Désingularisation des variétés de Schubert généralisées , 1974 .

[11]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[12]  Alexander Yong,et al.  Stable Grothendieck polynomials and K-theoretic factor sequences , 2005 .

[13]  T. Lam,et al.  A conjectural Peterson isomorphism in K-theory , 2017, Journal of Algebra.

[14]  William Fulton,et al.  Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .

[15]  Ezra Miller,et al.  Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces , 2008, 0808.2785.

[16]  Thomas Lam,et al.  Back stable Schubert calculus , 2018, Compositio Mathematica.

[17]  David Anderson K-theoretic Chern class formulas for vexillary degeneracy loci , 2016, Advances in Mathematics.

[18]  Tomoo Matsumura,et al.  Determinantal and Pfaffian formulas of K-theoretic Schubert calculus , 2015 .

[19]  Michel Brion Positivity in the Grothendieck group of complex flag varieties , 2001 .

[20]  Grothendieck classes of quiver varieties , 2001, math/0104029.

[21]  A. Yong,et al.  Schubert polynomials and quiver formulas , 2002, math/0211300.

[22]  Anna Weigandt,et al.  Bumpless pipe dreams and alternating sign matrices , 2020, J. Comb. Theory, Ser. A.

[23]  C. Lenart A K-theory version of Monk's formula and some related multiplication formulas , 2003 .

[24]  Daoji Huang Schubert Products for Permutations with Separated Descents. , 2021 .

[25]  Diagonal degenerations of matrix Schubert varieties. , 2020, 2008.01717.

[26]  Anne Schilling,et al.  K-theory Schubert calculus of the affine Grassmannian , 2009, Compositio Mathematica.

[27]  Travis Scrimshaw,et al.  Colored five‐vertex models and Lascoux polynomials and atoms , 2019, Journal of the London Mathematical Society.

[28]  Sergey Fomin,et al.  Grothendieck polynomials and the Yang - Baxter equation , 1994 .

[29]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[30]  William Fulton,et al.  Schubert Polynomials in Types A and C , 2021 .

[31]  Santhosh K. P. Kumar,et al.  T-equivariant K-theory of generalized flag varieties. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Knutson,et al.  A K_T-deformation of the ring of symmetric functions , 2015, 1503.04070.

[33]  Peter L. Guo,et al.  Bumpless Pipedreams, Reduced Word Tableaux and Stanley Symmetric Functions , 2018, 1810.11916.

[35]  Daoji Huang Bijective Proofs of Monk's rule for Schubert and Double Schubert Polynomials with Bumpless Pipe Dreams , 2020, Electron. J. Comb..

[36]  Thomas Lam,et al.  Combinatorial Hopf algebras and K-homology of Grassmanians , 2007, 0705.2189.

[37]  C. Lenart Noncommutative Schubert Calculus and Grothendieck Polynomials , 1999 .

[38]  Cristian Lenart,et al.  Combinatorial Aspects of the K-Theory of Grassmannians , 2000 .

[39]  M. Kashiwara,et al.  Equivariant $K$-theory of affine flag manifolds and affine Grothendieck polynomials , 2006, math/0601563.