A Three-dimensional Error-diffusion Algorithm for Importance Sampling with Blue-noise Property

We propose a novel discrete three-dimensional sampling algorithm based on the error-diffusion method, which can generate sampling points with blue-noise property. To obtain sampling points with a high quality bluenoise spectrum in 3D domain, we introduce an effective metric for the 3D blue-noise property based on 3D Fourier transform. Then, a cost function used for the search of optimal parameters, including optimal diffusion coefficients and threshold modulation strength values, is designed to guarantee the blue-noise property of sampling points. Experiments show that our algorithm is able to generate sampling points with uniform and random distribution, which possess 3D blue-noise property, and supports importance sampling in three dimensional domain. Comparing with similar work, our algorithm can achieve sampling point distribution that possesses better isotropic properties and has lower time cost in 3D discrete domain. Several applications including volume rendering and tetrahedral meshing are also explored.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[3]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[4]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[5]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[6]  Reiner Eschbach,et al.  Threshold modulation in error diffusion , 1993, J. Electronic Imaging.

[7]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[8]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[9]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[10]  László Szirmay-Kalos,et al.  Monte Carlo volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[11]  Bingfeng Zhou,et al.  Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation , 2003, ACM Trans. Graph..

[12]  Oliver Deussen,et al.  Wang Tiles for image and texture generation , 2003, ACM Trans. Graph..

[13]  Victor Ostromoukhov,et al.  Fast hierarchical importance sampling with blue noise properties , 2004, ACM Trans. Graph..

[14]  George Drettakis,et al.  Relief : A Modeling by Drawing Tool , 2004 .

[15]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[16]  Michael Fisher,et al.  Squire's Fundamentals of Radiology, 6th ed , 2004 .

[17]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[18]  K.B. White,et al.  Poisson Disk Point Sets by Hierarchical Dart Throwing , 2007, 2007 IEEE Symposium on Interactive Ray Tracing.

[19]  Naohisa Sakamoto,et al.  Particle-based volume rendering , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[20]  Li-Yi Wei Parallel Poisson disk sampling , 2008, SIGGRAPH 2008.

[21]  Steve C. Maddock,et al.  Accurate multidimensional Poisson-disk sampling , 2009, TOGS.

[22]  David S. Ebert,et al.  Stippling by example , 2009, NPAR '09.

[23]  Mohamed S. Ebeida,et al.  Efficient maximal poisson-disk sampling , 2011, ACM Trans. Graph..

[24]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[25]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[26]  Jian-Jun Zhang,et al.  Blue noise sampling using an SPH-based method , 2015, ACM Trans. Graph..

[27]  Bin Wang,et al.  A Survey of Blue-Noise Sampling and Its Applications , 2015, Journal of Computer Science and Technology.

[28]  Li Chen,et al.  Tetrahedral meshing via maximal Poisson-disk sampling , 2016, Comput. Aided Geom. Des..

[29]  Jing Hua,et al.  Kernel-based adaptive sampling for image reconstruction and meshing , 2016, Comput. Aided Geom. Des..

[30]  Naosuke Ino “ 4 . 3 : An Adaptive Algorithm for Spatial Grey Scale , 2017 .