Polar Coding for the General Wiretap Channel With Extensions to Multiuser Scenarios

Information-theoretic work for wiretap channels is mostly based on random coding schemes. Designing practical coding schemes to achieve information-theoretic secrecy is an important problem. By applying two recently developed techniques for polar codes, namely, universal polar coding and polar coding for asymmetric channels, we propose a polar coding scheme to achieve the secrecy capacity of the general wiretap channel. We then apply this coding scheme to achieve the best-known inner bounds for the multiple access wiretap channel (MAC-WTC), and the broadcast and interference channels with confidential messages (BC-CM and IC-CM).

[1]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[2]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[3]  Alexander Barg,et al.  Achieving Secrecy Capacity of the Wiretap Channel and Broadcast Channel With a Confidential Component , 2017, IEEE Transactions on Information Theory.

[4]  Alexander Barg,et al.  Polar codes for distributed hierarchical source coding , 2015, Adv. Math. Commun..

[5]  Toshiyuki Tanaka,et al.  Channel polarization on q-ary discrete memoryless channels by arbitrary kernels , 2010, 2010 IEEE International Symposium on Information Theory.

[6]  Saygun Onay Successive cancellation decoding of polar codes for the two-user binary-input MAC , 2013, 2013 IEEE International Symposium on Information Theory.

[7]  Joseph M. Renes,et al.  Universal polar codes for more capable and less noisy channels and sources , 2013, 2014 IEEE International Symposium on Information Theory.

[8]  Raef Bassily,et al.  Ergodic Secret Alignment , 2010, IEEE Transactions on Information Theory.

[9]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[10]  Alexander Barg,et al.  Polar codes for q-ary channels, q =2r , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Rüdiger L. Urbanke,et al.  The compound capacity of polar codes , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[12]  Lele Wang,et al.  Polar coding for interference networks , 2014, 2014 IEEE International Symposium on Information Theory.

[13]  Ender Tekin,et al.  The General Gaussian Multiple-Access and Two-Way Wiretap Channels: Achievable Rates and Cooperative Jamming , 2007, IEEE Transactions on Information Theory.

[14]  Joseph M. Renes,et al.  Efficient One-Way Secret-Key Agreement and Private Channel Coding via Polarization , 2013, ASIACRYPT.

[15]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[16]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[17]  Alexander Vardy,et al.  A new polar coding scheme for strong security on wiretap channels , 2013, 2013 IEEE International Symposium on Information Theory.

[18]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[19]  Sennur Ulukus,et al.  Wiretap Channels: Implications of the More Capable Condition and Cyclic Shift Symmetry , 2011, IEEE Transactions on Information Theory.

[20]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[21]  S. Ulukus,et al.  On the secrecy of multiple access wiretap channel , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[22]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[23]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[24]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[25]  Roy D. Yates,et al.  Discrete Memoryless Interference and Broadcast Channels With Confidential Messages: Secrecy Rate Regions , 2007, IEEE Transactions on Information Theory.

[26]  Shlomo Shamai,et al.  Secrecy-achieving polar-coding , 2010, 2010 IEEE Information Theory Workshop.

[27]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.

[28]  Rüdiger L. Urbanke,et al.  Universal polar codes , 2013, 2014 IEEE International Symposium on Information Theory.

[29]  Alexander Barg,et al.  Polar Codes for $q$-Ary Channels, $q=2^{r}$ , 2013, IEEE Trans. Inf. Theory.

[30]  Sennur Ulukus,et al.  Polar coding for the general wiretap channel , 2014, 2015 IEEE Information Theory Workshop (ITW).

[31]  Raef Bassily,et al.  Cooperative Security at the Physical Layer: A Summary of Recent Advances , 2013, IEEE Signal Processing Magazine.

[32]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[33]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[34]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[35]  Erdal Arikan,et al.  Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[36]  Lele Wang,et al.  Universal polarization , 2014, ISIT.

[37]  Ender Tekin,et al.  The Gaussian Multiple Access Wire-Tap Channel , 2006, IEEE Transactions on Information Theory.

[38]  Rüdiger L. Urbanke,et al.  Achieving Marton’s Region for Broadcast Channels Using Polar Codes , 2014, IEEE Transactions on Information Theory.

[39]  Erdal Arikan Bilkent Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, ISIT 2012.

[40]  Eren Sasoglu Polar codes for discrete alphabets , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[41]  Lele Wang,et al.  Sliding-window superposition coding for interference networks , 2014, 2014 IEEE International Symposium on Information Theory.

[42]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[43]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[44]  Sennur Ulukus,et al.  Cooperative Secrecy in Wireless Communications , 2009 .

[45]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[46]  Ruoheng Liu,et al.  Securing Wireless Communications at the Physical Layer , 2014 .