The LX—T relation and intracluster gas fractions of X-ray clusters

We re-examine the X-ray luminosity–temperature relation using a nearly homogeneous data set of 24 clusters selected for statistically accurate temperature measurements and absence of strong cooling flows. The data exhibit a remarkably tight power-law relation between bolometric luminosity and temperature with a slope 2.88 ± 0.15. With reasonable assumptions regarding cluster structure, we infer an upper limit on fractional variations in the intracluster gas fraction 〈(δ fgas fgas)2〉1/2≤ 15 per cent. A strictly homogeneous Ginga subset of 18 clusters places a more stringent limit of 9 per cent. Imaging data from the literature are employed to determine absolute values of fgas within spheres encompassing density contrasts δc=500 and 200 with respect to the critical density. Comparing binding mass estimates based on the virial theorem (VT) and the hydrostatic β-model (BM), we find a temperature-dependent discrepancy in fgas between the two methods caused by systematic variation of the outer slope parameter β with temperature. Mean values (for H0=50 km s−1 Mpc−1) range from f¯gas=0.10 for cool (T 4 keV) clusters using the BM at δc=200. There is evidence that cool clusters have a lower mean gas fraction than hot clusters, but it is not possible to assess the statistical significance of this effect in the present data set. The T dependence of the intracluster medium (ICM) density structure, coupled with the increase of the gas fraction with T in the VT approach, explains the steepening of the LX–T relation. The small variation about the mean gas fraction within this majority subpopulation of clusters presents an important constraint for theories of galaxy formation and supports arguments against an Einstein–de Sitter universe based on the population mean gas fraction and conventional, primordial nucleosynthesis. The apparent trend of lower gas fractions and more extended atmospheres in low-temperature systems is consistent with expectations of models incorporating the effects of galactic winds on the ICM.

[1]  Compact Groups of Galaxies , 1997, astro-ph/9710289.

[2]  A. Evrard,et al.  A Simulation of the Intracluster Medium With Feedback from Cluster Galaxies , 1993, astro-ph/9309050.

[3]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[4]  H. Mendelson,et al.  SS 433 - a 6 year photometric record , 1986 .

[5]  Maarten Schmidt,et al.  Counts, evolution, and background contribution of X-ray quasars and other extragalactic X-ray sources , 1986 .

[6]  D. Trèvese,et al.  An X-Ray and Optical Study of Matter Distribution in Clusters of Galaxies , 1997 .

[7]  J. Culhane,et al.  The X-ray temperatures of eight clusters of galaxies and their relationship to other cluster properties , 1977 .

[8]  M. Loewenstein,et al.  The Mass of Abell 1060 and AWM 7 from Spatially Resolved X-Ray Spectroscopy: Variations in Baryon Fraction , 1996, astro-ph/9608111.

[9]  A. Cavaliere,et al.  The Luminosity-Temperature Relation for Groups and Clusters of Galaxies , 1997, astro-ph/9705058.

[10]  S. Aarseth,et al.  A numerical simulation of the formation of the terrestrial planets , 1986 .

[11]  E. L. Robinson,et al.  On the Discordant Measurements of the Radial Velocity Curve of the Late-Type Star in the Dwarf Nova SS Cygni , 1986 .

[12]  W. Seitter Books-Received - Cosmological Aspects of X-Ray Clusters of Galaxies , 1994 .

[13]  The Intracluster Gas Fraction in X-ray Clusters : Constraints on the Clustered Mass Density , 1997, astro-ph/9701148.

[14]  J. Hughes,et al.  The X-ray spectrum of Abell 665 , 1992 .

[15]  W. Forman,et al.  An X-ray study of the Centaurus cluster of galaxies using Einstein , 1985 .

[16]  K. Sellgren Ultraviolet-pumped Infrared Fluorescent Molecular Hydrogen Emission in Reflection Nebulae , 1986 .

[17]  Neta A. Bahcall CLUSTERS OF GALAXIES , 1977 .

[18]  A. Edge,et al.  EXOSAT observations of clusters of galaxies. I - The X-ray data. II - X-ray to optical correlations , 1991 .

[19]  Maxim Markevitch,et al.  The LX-T Relation and Temperature Function for Nearby Clusters Revisited , 1998, astro-ph/9802059.

[20]  R. F. O’Connell,et al.  Relativistic Kepler's Third Law , 1986 .

[21]  J. Hughes,et al.  Ginga observations of the Coma cluster and studies of the spatial distribution of iron , 1993 .

[22]  D. Fadda,et al.  Optical Substructures in 48 Galaxy Clusters: New Insights from a Multiscale Analysis , 1997 .

[23]  August E. Evrard,et al.  AN X-RAY SIZE-TEMPERATURE RELATION FOR GALAXY CLUSTERS: OBSERVATION AND SIMULATION , 1997 .

[24]  J. Mulchaey,et al.  The Properties of Poor Groups of Galaxies. II. X-Ray and Optical Comparisons , 1997, astro-ph/9708139.

[25]  Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data - I. The sample , 1996, astro-ph/9602080.

[26]  M. Markevitch,et al.  Comparison of ASCA and ROSAT Cluster Temperatures: A2256, A3558, and AWM 7 , 1996, astro-ph/9605026.

[27]  August E. Evrard,et al.  Mass estimates of X-ray clusters , 1996 .

[28]  H. Ebeling,et al.  A ROSAT survey of Hickson's compact galaxy groups , 1996 .

[29]  S. Allen,et al.  The impact of cooling flows on the TX–LBol relation for the most luminous clusters , 1998, astro-ph/9802218.

[30]  J. Hughes,et al.  A measurement of the value of the Hubble constant from the X-ray properties and the Sunyaev-Zel'dovich effect of Abell 665 , 1991 .

[31]  P. Thomas,et al.  Mass deposition in cooling flows – analysis of the X-ray data , 1987 .

[32]  G. Hasinger,et al.  Clusters of Galaxies , 1995 .

[33]  Raymond E. White The metal abundance and specific energy of intracluster gas , 1991 .

[34]  A. Fabian,et al.  Einstein Observatory evidence for the widespread baryon overdensity in clusters of galaxies , 1995, astro-ph/9502092.

[35]  P. Hut,et al.  A phenomenological triple star scenario for SS 433 , 1986 .

[36]  K. Koyama,et al.  Frontiers of X-ray astronomy , 1992 .

[37]  A. Edge,et al.  GINGA observations of Abell 2281: implications for H0 , 1990 .

[38]  M. Matsuoka,et al.  Radial Distributions of the Temperature and Metal Abundances in the Ophiuchus Cluster of Galaxies , 1996 .

[39]  S. Antiochos,et al.  Modeling of coronal X-ray emission from active cool stars. I Hyades cluster , 1986 .

[40]  M. Arnaud,et al.  A2163: AN EXCEPTIONALLY HOT CLUSTER OF GALAXIES , 1992 .

[41]  R. J. Dickens,et al.  The X-ray spectra of clusters of galaxies and their relationship to other cluster properties , 1979 .

[42]  W. Forman,et al.  Enrichment and Heating of the Intracluster Medium through Galactic Winds , 1991 .

[43]  K. Makishima,et al.  Uniformity in the Temperature and Metallicity of the X-Ray Emitting Gas in the Abell 1060 Cluster of Galaxies , 1996 .

[44]  C. Jones,et al.  The structure of clusters of galaxies observed with Einstein , 1984 .

[45]  A. Evrard,et al.  Expectations for X-ray cluster observations by the Rosat satellite , 1991 .

[46]  A. Edge,et al.  Cooling flows and the X-ray luminosity–temperature relation for clusters , 1994 .

[47]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[48]  W. Forman,et al.  Cosmological implications of ROSAT observations of groups and clusters of galaxies , 1995 .

[49]  J. Mould,et al.  The age of the Small Magellanic Cloud globular cluster NGC 411 , 1986 .

[50]  O. C. Allkofer,et al.  Searches for narrow-angle anisotropies in the primary energy range 0.1-10 TeV , 1985 .

[51]  G. Hartner,et al.  The structure of the Virgo cluster of galaxies from Rosat X-ray images , 1994, Nature.

[52]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[53]  J. Cohen,et al.  The C, N, and O abundances of giant stars in Omega Centauri , 1986 .

[54]  S. Allen Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies , 1997, astro-ph/9710217.

[55]  Velocity Dispersions and X-Ray Temperatures of Galaxy Clusters , 1995, astro-ph/9507031.

[56]  A. Edge,et al.  The spectral signature of the cooling flow in Abell 478 , 1992 .

[57]  R. Mushotzky,et al.  OSO 8 x-ray spectra of clusters of galaxies. I. Observations of twenty clusters: Physical correlations , 1978 .

[58]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[59]  Keith A. Arnaud,et al.  An X-ray flux-limited sample of clusters of galaxies : evidence for evolution of the luminosity function. , 1990 .

[60]  W. Forman,et al.  Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters , 1990 .

[61]  M. Geller,et al.  X-Ray Emission from Optically Selected Galaxy Groups , 1997 .

[62]  W. Forman,et al.  A catalog of intracluster gas temperatures , 1993 .

[63]  Ulrich G. Briel,et al.  An X-ray temperature map of the merging galaxy cluster A2256 , 1994, Nature.

[64]  W. Forman,et al.  The evolution of the interstellar medium in elliptical galaxies. I, The early wind phase , 1990 .

[65]  Keith A. Arnaud,et al.  A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function , 1991 .