On the Behaviour of Upwind Schemes in the Low Mach Number Limit: A Review

This work is devoted to a review of different modifications proposed to enable compressible flow solvers to compute accurately flows near the incompressible limit. First the reasons of the failure of upwind solvers to obtain accurate solutions in the low Mach number regime are explained. Then different correction methods proposed in the literature are reviewed and discussed. This work concludes by some numerical experiments to illustrate the behaviour of the different methods.

[1]  Xue-song Li,et al.  An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..

[2]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[3]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[4]  P. Sagaut,et al.  Large Eddy Simulation of Flow Around an Airfoil Near Stall , 2002 .

[5]  Eli Turkel,et al.  Assessment of Preconditioning Methods for Multidimensional Aerodynamics , 1997 .

[6]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[7]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[8]  Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation , 1998 .

[9]  H. Kreiss Problems with different time scales for partial differential equations , 1980 .

[10]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..

[11]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[12]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[13]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[14]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[15]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .

[16]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[17]  S. Schochet THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .

[18]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[19]  P. Wesseling,et al.  A conservative pressure-correction method for flow at all speeds , 2003 .

[20]  E. Turkel,et al.  PRECONDITIONING TECHNIQUES IN COMPUTATIONAL FLUID DYNAMICS , 1999 .

[21]  Xue-song Li,et al.  Mechanism of Roe-type schemes for all-speed flows and its application , 2013 .

[22]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[23]  G. Volpe Performance of compressible flow codes at low Mach numbers , 1993 .

[24]  Stéphane Dellacherie,et al.  The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..

[25]  Philipp Birken,et al.  Stability of Preconditioned Finite Volume Schemes at Low Mach Numbers , 2005 .

[26]  Rémi Abgrall,et al.  Special issue: Low Mach number flows. Selected papers based on the presentation at the international conference, Porquerolles Island, France, June 21--25, 2004. , 2005 .

[27]  H. Kreiss,et al.  Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations , 1991 .

[28]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[29]  T. Gallouët,et al.  AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .

[30]  Philipp Birken,et al.  L2Roe: a low dissipation version of Roe's approximate Riemann solver for low Mach numbers , 2016 .

[31]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[32]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[33]  S. Schochet Asymptotics for symmetric hyperbolic systems with a large parameter , 1988 .

[34]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[35]  Hervé Guillard On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells , 2009 .

[36]  B. Gustafsson Asymptotic expansions for hyperbolic problems with different time-scales , 1980 .

[37]  Guy Métivier,et al.  Limite incompressible des équations d’Euler non isentropiques , 2001 .

[38]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[39]  J. Peraire,et al.  Compressible and incompressible flow; an algorithm for all seasons , 1990 .

[40]  H. Kreiss,et al.  Problems with Different Time Scales for Nonlinear Partial Differential Equations , 1982 .

[41]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[42]  T. Alazard A minicourse on the low Mach number limit , 2008 .

[43]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[44]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[45]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[46]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[47]  Chun-wei Gu,et al.  Development of Roe-type scheme for all-speed flows based on preconditioning method , 2009 .

[48]  Eli Turkel,et al.  Review of preconditioning methods for fluid dynamics , 1993 .

[49]  Georg Bader,et al.  The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime , 2009, J. Comput. Phys..

[50]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..