On the propagation of Dirac fermions in graphene with strain-induced inhomogeneous Fermi velocity

We consider systems described by a two-dimensional Dirac equation where the Fermi velocity is inhomogeneous as a consequence of mechanical deformations. We show that the mechanical deformations can lead to deflection and focusing of the wave packets. The analogy with known reflectionless quantum systems is pointed out. Furthermore, with the use of the qualitative spectral analysis, we discuss how inhomogeneous strains can be used to create waveguides for valley polarized transport of partially dispersionless wave packets.

[1]  M. Franz,et al.  Dispersive Landau levels and valley currents in strained graphene nanoribbons , 2019, Physical Review B.

[2]  B. S. Kandemir Hairy BTZ black hole and its analogue model in graphene , 2019, Annals of Physics.

[3]  D. Zhai,et al.  Electron dynamics in strained graphene , 2019, Modern Physics Letters B.

[4]  R. Nazmitdinov,et al.  Klein collimation by rippled graphene superlattice , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  R. J. Cobley,et al.  Modifying the electrical properties of graphene by reversible point-ripple formation , 2019, Carbon.

[6]  S. Ulloa,et al.  Sublattice symmetry breaking and Kondo-effect enhancement in strained graphene , 2018, Physical Review B.

[7]  Miller Mendoza Jimenez,et al.  Confining massless Dirac particles in two-dimensional curved space , 2018, Physical Review B.

[8]  Y. Betancur-Ocampo Controlling electron flow in anisotropic Dirac materials heterojunctions: a super-diverging lens , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Pinshane Y. Huang,et al.  Strain Modulation of Graphene by Nanoscale Substrate Curvatures: A Molecular View. , 2018, Nano letters.

[10]  V. Jakubsk'y,et al.  Qualitative analysis of magnetic waveguides for two-dimensional Dirac fermions , 2018, Annals of Physics.

[11]  T. Taniguchi,et al.  Quantum Wires and Waveguides Formed in Graphene by Strain. , 2018, Nano letters.

[12]  Xu Du,et al.  Random Gauge Field Scattering in Monolayer Graphene. , 2017, Nano letters.

[13]  M. Portnoi,et al.  Localization of massless Dirac particles via spatial modulations of the Fermi velocity , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  P. Roy,et al.  Bound states in graphene via Fermi velocity modulation , 2017 .

[15]  Salvador Barraza-Lopez,et al.  Electronic and optical properties of strained graphene and other strained 2D materials: a review , 2016, Reports on progress in physics. Physical Society.

[16]  V. Jakubský,et al.  Dispersionless wave packets in Dirac materials , 2016, 1604.00157.

[17]  J. Coraux,et al.  Universal classification of twisted, strained and sheared graphene moiré superlattices , 2016, Scientific Reports.

[18]  S. G. Tan,et al.  Perfect valley filter in strained graphene with single barrier region , 2016, 1602.03269.

[19]  F. Liu,et al.  Strain engineering of graphene: a review. , 2016, Nanoscale.

[20]  Gang Zhang,et al.  Strain effects on thermoelectric properties of two-dimensional materials , 2015 .

[21]  A. Iorio,et al.  Revisiting the gauge fields of strained graphene , 2015, 1508.00926.

[22]  F. Guinea,et al.  Strain engineering in semiconducting two-dimensional crystals , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  M. Oliva-Leyva,et al.  Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain , 2014, 1404.2619.

[24]  Qingtian Zhang,et al.  A spin beam splitter in graphene through the Goos–Hänchen shift , 2014 .

[25]  N. Marzari,et al.  Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation , 2014, 1407.0830.

[26]  A. Kobayashi,et al.  Molecular Dirac Fermion Systems — Theoretical and Experimental Approaches — , 2014 .

[27]  D. Krejčiřík,et al.  Qualitative analysis of trapped Dirac fermions in graphene , 2014, 1405.2535.

[28]  T. Wehling,et al.  Dirac materials , 2014, 1405.5774.

[29]  A. Iorio,et al.  Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that , 2013, 1308.0265.

[30]  M. Zubkov,et al.  Emergent Horava gravity in graphene , 2014 .

[31]  Francisco Guinea,et al.  Artificial honeycomb lattices for electrons, atoms and photons. , 2013, Nature nanotechnology.

[32]  G.E.Volovik,et al.  Emergent Horava gravity in graphene , 2013, 1305.4665.

[33]  F. Peeters,et al.  Pseudo magnetic field in strained graphene: Revisited , 2013, 1304.0629.

[34]  F. Peeters,et al.  Sorting the modes contributing to guidance in strain-induced graphene waveguides , 2013 .

[35]  Yang Liu,et al.  Guided modes and quantum Goos–Hänchen shift in graphene waveguide: Influence of a velocity barrier , 2013 .

[36]  Z. Cao,et al.  Effects of strain on Goos–Hänchen-like shifts of graphene , 2012 .

[37]  F. de Juan,et al.  Space dependent Fermi velocity in strained graphene. , 2012, Physical review letters.

[38]  Jian-Jun Zhang,et al.  Velocity-controlled guiding of electron in graphene: Analogy of optical waveguides , 2011 .

[39]  G. Angilella,et al.  Transport properties of graphene across strain-induced nonuniform velocity profiles , 2011, 1110.3391.

[40]  F. Zhai,et al.  Valley beam splitter based on strained graphene , 2011 .

[41]  P. Allain,et al.  Klein tunneling in graphene: optics with massless electrons , 2011, 1104.5632.

[42]  L. Nieto,et al.  Klein tunneling in carbon nanostructures: A free-particle dynamics in disguise , 2010, 1010.0569.

[43]  Zhenhua Wu,et al.  Valley-dependent Brewster angles and Goos-Hänchen effect in strained graphene. , 2010, Physical review letters.

[44]  G. A. Farias,et al.  Wave packet dynamics and valley filter in strained graphene , 2010, 1105.1125.

[45]  R. Pinčák,et al.  Electronic properties of disclinated flexible membrane beyond the inextensional limit: application to graphene , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  F. Guinea,et al.  Gauge fields in graphene , 2010, 1003.5179.

[47]  R. Fazio,et al.  Velocity-modulation control of electron-wave propagation in graphene , 2009, 0912.2608.

[48]  F. Nori,et al.  Tunable electronic transport and unidirectional quantum wires in graphene subjected to electric and magnetic fields , 2009, 0910.3106.

[49]  F. Guinea,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2009, 0909.1787.

[50]  A. Kobayashi,et al.  Electronic properties close to Dirac cone in two-dimensional organic conductor α-(BEDT-TTF)2I3 , 2008, 0806.4025.

[51]  A. Neto,et al.  Strain engineering of graphene's electronic structure. , 2008, Physical review letters.

[52]  A. Kobayashi,et al.  Properties Close to Dirac Cone in Two-Dimensional Organic Conductor alpha-(BEDT-TTF)2I3 , 2008 .

[53]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[54]  K. Novoselov,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006, cond-mat/0604323.

[55]  V. Osipov,et al.  Electronic structure of carbon nanoparticles , 2003 .

[56]  D. Tománek Mesoscopic origami with graphite: scrolls, nanotubes, peapods , 2002 .

[57]  A. Khare,et al.  Supersymmetry and quantum mechanics , 1994, hep-th/9405029.