The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

[1]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[2]  George C. Schatz,et al.  Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions , 2002 .

[3]  C. Foss,et al.  Metal Nanoparticles: Synthesis, Characterization, and Applications , 2001 .

[4]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[5]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[6]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[7]  and H. Metiu,et al.  THE ELECTROMAGNETIC THEORY OF SURFACE ENHANCED SPECTROSCOPY , 1984 .

[8]  T. P. Wallace The scattering of light and other electromagnetic radiation by Milton Kerker. Academic Press, New York, 1969. 666 + xv pp. $33.50 , 1970 .

[9]  M. El-Sayed,et al.  Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster , 2002 .

[10]  George C. Schatz,et al.  DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties , 2000 .

[11]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[12]  P. Liao,et al.  Surface-enhanced Raman scattering on gold and aluminum particle arrays. , 1982, Optics letters.

[13]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[14]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[15]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[16]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[17]  C. R. Martin,et al.  Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites : Mie and kappa influence on absorption maxima , 1997 .

[18]  Christian Hafner,et al.  Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  Xie,et al.  Single molecule emission characteristics in near-field microscopy. , 1995, Physical review letters.

[20]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[21]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[22]  Vadim A. Markel,et al.  Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters , 1999 .

[23]  Vadim A. Markel,et al.  Toward a universal extinction spectrum of self-affine silver colloid clusters: Experiment and simulation , 1999, The Journal of Chemical Physics.

[24]  H. Metiu Surface enhanced spectroscopy , 1984 .

[25]  M. Meier,et al.  Enhanced fields on large metal particles: dynamic depolarization. , 1983, Optics letters.

[26]  P. Barber Absorption and scattering of light by small particles , 1984 .

[27]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[28]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[29]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[30]  Yuen-Ron Shen,et al.  Surface-enhanced Second-harmonic Generation , 1981 .

[31]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[32]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[33]  J. Hupp,et al.  Nonlinear Optical Properties of Molecularly Bridged Gold Nanoparticle Arrays , 2000 .

[34]  R. V. Duyne,et al.  Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass , 1993 .

[35]  M. Kerker Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids , 1984 .

[36]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[37]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[38]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[39]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[40]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[41]  N. Félidj,et al.  Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids , 1999 .

[42]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[43]  D. Pohl,et al.  Scanning near-field optical probe with ultrasmall spot size. , 1995, Optics letters.

[44]  George C. Schatz,et al.  DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response , 2000 .

[45]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[46]  V. G. Farafonov,et al.  Optical properties of spheroidal particles , 1993 .

[47]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[48]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[49]  Tony F. Heinz,et al.  Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material , 1999 .

[50]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[51]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[52]  F. Adrian Surface enhanced Raman scattering by surface plasmon enhancement of electromagnetic fields near spheroidal particles on a roughened metal surface , 1981 .

[53]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[54]  R. Hummel,et al.  Optics of small particles, interfaces, and Surfaces , 1997 .

[55]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[56]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[57]  George C. Schatz,et al.  A surface‐enhanced hyper‐Raman and surface‐enhanced Raman scattering study of trans‐1,2‐bis(4‐pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory , 1996 .