Hyperspectral Image Denoising Using Legendre-Fenchel Transform for Improved Sparsity Based Classification

A significant challenge in hyperspectral remote sensing image analysis is the presence of noise, which has a negative impact on various data analysis methods such as image classification, target detection, unmixing etc. In order to address this issue, hyperspectral image denoising is used as a preprocessing step prior to classification. This paper presents an effective, fast and reliable method for denoising hyperspectral images followed by classification based on sparse representation of hyperspectral data. The use of Legendre-Fenchel transform for denoising is an effective spatial preprocessing step to improve the classification accuracy. The main advantage of Legendre-Fenchel transform is that it removes the noise in the image while preserving the sharp edges. The sparsity based algorithm namely, Orthogonal Matching Pursuit (OMP) is used for classification. The experiment is done on Indian Pines data set acquired by Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor. It is inferred that the denoising of hyperspectral images before classification improves the Overall Accuracy of classification. The effect of preprocessing using Legendre Fenchel transformation is shown by comparing the classification results with Total Variation (TV) based denoising. A statistical comparison of the accuracies obtained on standard hyperspectral data before and after denoising is also analysed to show the effectiveness of the proposed method. The experimental result analysis shows that for 10\(\%\) training set the proposed method leads to the improvement in Overall Accuracy from 83.18\(\%\) to 91.06\(\%\), Average Accuracy from 86.17\(\%\) to 92.78\(\%\) and Kappa coefficient from 0.8079 to 0.8981.

[1]  V. Sowmya,et al.  Spatial preprocessing for improved sparsity based hyperspectral image classification , 2012 .

[2]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[3]  V. Sowmya,et al.  A novel approach for denoising coloured remote sensing image using Legendre Fenchel Transformation , 2014, 2014 International Conference on Recent Trends in Information Technology.

[4]  Vivek K. Goyal,et al.  Denoising Hyperspectral Imagery and Recovering Junk Bands using Wavelets and Sparse Approximation , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[5]  Trac D. Tran,et al.  Hyperspectral Image Classification Using Dictionary-Based Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Liangpei Zhang,et al.  Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[9]  V. Sowmya,et al.  An experimental study on application of Orthogonal Matching Pursuit algorithm for image denoising , 2013, 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s).