Drosophila tools and assays for the study of human diseases

ABSTRACT Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes. Editors' choice - Drosophila Collection: In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases.

[1]  C. Duch,et al.  Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function , 2016, Disease Models & Mechanisms.

[2]  G. Landry,et al.  Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. , 2016, American journal of physiology. Renal physiology.

[3]  Emile G Magny,et al.  Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction , 2015, Disease Models & Mechanisms.

[4]  R. Bodmer,et al.  Gaining Insights into Diabetic Cardiomyopathy from Drosophila , 2015, Trends in Endocrinology & Metabolism.

[5]  C. Elliott,et al.  Neurophysiology of Drosophila Models of Parkinson's Disease , 2015, Parkinson's disease.

[6]  S. Panda,et al.  Time-restricted feeding attenuates age-related cardiac decline in Drosophila , 2015, Science.

[7]  Michael F. Wangler,et al.  Fruit Flies in Biomedical Research , 2015, Genetics.

[8]  H. Bellen,et al.  Glial Lipid Droplets and ROS Induced by Mitochondrial Defects Promote Neurodegeneration , 2015, Cell.

[9]  A. Sanyal,et al.  NAFLD in 2014: Genetics, diagnostics and therapeutic advances in NAFLD , 2015, Nature Reviews Gastroenterology &Hepatology.

[10]  Subhash D. Katewa,et al.  Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes , 2014, Proceedings of the National Academy of Sciences.

[11]  Ke Zhang,et al.  Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production , 2014, eLife.

[12]  Jacqueline A Palace,et al.  Inherited disorders of the neuromuscular junction: an update , 2014, Journal of Neurology.

[13]  Nele A. Haelterman,et al.  Large-scale identification of chemically induced mutations in Drosophila melanogaster , 2014, Genome research.

[14]  Eric Boerwinkle,et al.  A Drosophila Genetic Resource of Mutants to Study Mechanisms Underlying Human Genetic Diseases , 2014, Cell.

[15]  P. Byass The global burden of liver disease: a challenge for methods and for public health , 2014, BMC Medicine.

[16]  J. Littleton,et al.  Synaptotagmin 2 mutations cause an autosomal-dominant form of lambert-eaton myasthenic syndrome and nonprogressive motor neuropathy. , 2014, American journal of human genetics.

[17]  M. Parisi,et al.  Axon Injury and Regeneration in the Adult Drosophila , 2014, Scientific Reports.

[18]  R. Ferrari,et al.  The Notch pathway: a novel target for myocardial remodelling therapy? , 2014, European heart journal.

[19]  H. Bellen,et al.  Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases , 2014, Current Opinion in Neurobiology.

[20]  A. Mattiazzi,et al.  Aging and CaMKII Alter Intracellular Ca2+ Transients and Heart Rhythm in Drosophila melanogaster , 2014, PloS one.

[21]  S. Züchner,et al.  Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[22]  S. Mohr RNAi screening in Drosophila cells and in vivo. , 2014, Methods.

[23]  H. Bellen,et al.  Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. , 2014, Methods.

[24]  Karen Ocorr,et al.  Methods to assess Drosophila heart development, function and aging. , 2014, Methods.

[25]  Dana Carroll,et al.  Targeted genome engineering techniques in Drosophila. , 2014, Methods.

[26]  N. Perrimon,et al.  Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases , 2014, Disease Models & Mechanisms.

[27]  I. Benjamin,et al.  The NADPH Metabolic Network Regulates Human αB-crystallin Cardiomyopathy and Reductive Stress in Drosophila melanogaster , 2013, PLoS genetics.

[28]  N. Perrimon,et al.  Of flies and men: insights on organismal metabolism from fruit flies , 2013, BMC Biology.

[29]  Hugo J. Bellen,et al.  The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit , 2013, The Journal of cell biology.

[30]  X. Caubit,et al.  The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila , 2013, Development.

[31]  Fujian Zhang,et al.  An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. , 2013, Journal of the American Society of Nephrology : JASN.

[32]  Cheng-Hao Chien,et al.  Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy , 2012, Journal of biomedical optics.

[33]  A. Paululat,et al.  The ultrastructure of Drosophila heart cells. , 2012, Arthropod structure & development.

[34]  M. Poidevin,et al.  Drosophila melanogaster Acetyl-CoA-Carboxylase Sustains a Fatty Acid–Dependent Remote Signal to Waterproof the Respiratory System , 2012, PLoS genetics.

[35]  G. Macleod Calcium imaging at the Drosophila larval neuromuscular junction. , 2012, Cold Spring Harbor protocols.

[36]  R. Bodmer,et al.  Probing the polygenic basis of cardiomyopathies in Drosophila , 2012, Journal of cellular and molecular medicine.

[37]  N. Bonini,et al.  A Novel Drosophila Model of Nerve Injury Reveals an Essential Role of Nmnat in Maintaining Axonal Integrity , 2012, Current Biology.

[38]  Till F. M. Andlauer,et al.  In vivo imaging of Drosophila larval neuromuscular junctions to study synapse assembly. , 2012, Cold Spring Harbor protocols.

[39]  M. Romero,et al.  Ion and solute transport by Prestin in Drosophila and Anopheles. , 2012, Journal of insect physiology.

[40]  T. Kaufman,et al.  The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome , 2012, Genome Biology.

[41]  Jean-Pierre Bouchard,et al.  Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans , 2012, PLoS biology.

[42]  J. Epstein,et al.  Coordinating tissue interactions: Notch signaling in cardiac development and disease. , 2012, Developmental cell.

[43]  L. Partridge,et al.  Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease , 2011, Neurobiology of Aging.

[44]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[45]  H. Rockman,et al.  Drosophila, Genetic Screens, and Cardiac Function , 2011, Circulation research.

[46]  T. Baranski,et al.  A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila , 2011, Disease Models & Mechanisms.

[47]  N. Bursac,et al.  A Method to Measure Myocardial Calcium Handling in Adult Drosophila , 2011, Circulation research.

[48]  M. Tanouye,et al.  Drosophila as a Model for Epilepsy: bss Is a Gain-of-Function Mutation in the Para Sodium Channel Gene That Leads to Seizures , 2011, Genetics.

[49]  P. Verroust,et al.  A patient with cubilin deficiency. , 2011, The New England journal of medicine.

[50]  L. Rahme,et al.  Drosophila melanogaster as a model for human intestinal infection and pathology , 2011, Disease Models & Mechanisms.

[51]  Brett E. Bouma,et al.  Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems , 2010, Disease Models & Mechanisms.

[52]  B. Neuschwander‐Tetri,et al.  Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease , 2010, Hepatology.

[53]  Seungbok Lee,et al.  dCIP4 (Drosophila Cdc42-Interacting Protein 4) Restrains Synaptic Growth by Inhibiting the Secretion of the Retrograde Glass Bottom Boat Signal , 2010, The Journal of Neuroscience.

[54]  H. Rockman,et al.  Gene Deletion Screen for Cardiomyopathy in Adult Drosophila Identifies a New Notch Ligand , 2010, Circulation research.

[55]  M. Dickinson,et al.  A New Chamber for Studying the Behavior of Drosophila , 2010, PloS one.

[56]  Karin Aumayr,et al.  Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate , 2010, Cell.

[57]  R. Cooper,et al.  Monitoring Heart Function in Larval Drosophila melanogaster for Physiological Studies , 2009, Journal of visualized experiments : JoVE.

[58]  K. Ocorr,et al.  Semi-automated Optical Heartbeat Analysis of small hearts. , 2009, Journal of visualized experiments : JoVE.

[59]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[60]  C. Thummel,et al.  Drosophila HNF4 regulates lipid mobilization and beta-oxidation. , 2009, Cell metabolism.

[61]  J. I. Izpisúa Belmonte,et al.  A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. , 2009, BioTechniques.

[62]  B. Denholm,et al.  The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm , 2008, Nature.

[63]  M. Miura,et al.  A Drosophila orphan G protein-coupled receptor BOSS functions as a glucose-responding receptor: Loss of boss causes abnormal energy metabolism , 2008, Proceedings of the National Academy of Sciences.

[64]  T. Roeder,et al.  Molecular architecture of the fruit fly's airway epithelial immune system , 2008, BMC Genomics.

[65]  Kexiang Xu,et al.  A Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1 , 2008, Journal of Biological Chemistry.

[66]  J. Dow,et al.  Metabolomic profiling of Drosophila using liquid chromatography Fourier transform mass spectrometry , 2008, FEBS letters.

[67]  Michael J Ackerman,et al.  Prevalence of early-onset atrial fibrillation in congenital long QT syndrome. , 2008, Heart rhythm.

[68]  L. T. Wasserthal Drosophila flies combine periodic heartbeat reversal with a circulation in the anterior body mediated by a newly discovered anterior pair of ostial valves and `venous' channels , 2007, Journal of Experimental Biology.

[69]  C. Thummel,et al.  Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. , 2007, Cell metabolism.

[70]  Hitoshi Shimano,et al.  Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance , 2007, Nature Medicine.

[71]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[72]  C. Montell,et al.  Phototransduction and retinal degeneration in Drosophila , 2007, Pflügers Archiv - European Journal of Physiology.

[73]  Karen Ocorr,et al.  KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging , 2007, Proceedings of the National Academy of Sciences.

[74]  Karen Ocorr,et al.  Age-related cardiac disease model of Drosophila , 2007, Mechanisms of Ageing and Development.

[75]  B. Fielding,et al.  Specialized hepatocyte-like cells regulate Drosophila lipid metabolism , 2007, Nature.

[76]  S. Jones Ageing to arrhythmias: conundrums of connections in the ageing heart , 2006, The Journal of pharmacy and pharmacology.

[77]  D. Bers,et al.  Ca2+/Calmodulin-Dependent Protein Kinase II Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes , 2006, Circulation research.

[78]  L. Perrin,et al.  Control of Cardiac Rhythm by ORK1, a Drosophila Two-Pore Domain Potassium Channel , 2006, Current Biology.

[79]  I. Meinertzhagen,et al.  Development and structure of synaptic contacts in Drosophila. , 2006, Seminars in cell & developmental biology.

[80]  Joseph A Izatt,et al.  Drosophila as a model for the identification of genes causing adult human heart disease , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[81]  D. Srivastava,et al.  Mutations in NOTCH1 cause aortic valve disease , 2005, Nature.

[82]  Ronald L. Davis,et al.  Thirty years of olfactory learning and memory research in Drosophila melanogaster , 2005, Progress in Neurobiology.

[83]  M. Meisler,et al.  Sodium channel mutations in epilepsy and other neurological disorders. , 2005, Journal of Clinical Investigation.

[84]  Juan Du,et al.  Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. , 2005, Physiological genomics.

[85]  Guenter Haemmerle,et al.  Lipolysis: pathway under construction , 2005, Current opinion in lipidology.

[86]  R. Levine,et al.  Glutamatergic Innervation of the Heart Initiates Retrograde Contractions in Adult Drosophila melanogaster , 2005, The Journal of Neuroscience.

[87]  K. Zinn,et al.  Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function , 2004, PLoS biology.

[88]  Eetu Mäkelä,et al.  Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. , 2004, The Journal of clinical investigation.

[89]  R. Bodmer,et al.  Drosophila, an emerging model for cardiac disease. , 2004, Gene.

[90]  Jing Wang,et al.  Function-informed transcriptome analysis of Drosophila renal tubule , 2004, Genome Biology.

[91]  A. V. van Ginneken,et al.  Mutation in the KCNQ1 Gene Leading to the Short QT-Interval Syndrome , 2004, Circulation.

[92]  J. Littleton,et al.  Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Y. Kanwar,et al.  Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. , 2003, The Journal of clinical investigation.

[94]  R. Gräsbeck,et al.  Proteinuria in cubilin-deficient patients with selective vitamin B12 malabsorption , 2003, Pediatric Nephrology.

[95]  H. Jäckle,et al.  Control of Fat Storage by a Drosophila PAT Domain Protein , 2003, Current Biology.

[96]  P. Hiesinger,et al.  Drosophila VAP-33A Directs Bouton Formation at Neuromuscular Junctions in a Dosage-Dependent Manner , 2002, Neuron.

[97]  Richard D. Fetter,et al.  wishful thinking Encodes a BMP Type II Receptor that Regulates Synaptic Growth in Drosophila , 2002, Neuron.

[98]  G I Bell,et al.  Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. , 2001, The New England journal of medicine.

[99]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[100]  R. Ramirez-Solis,et al.  Proteinuria and Perinatal Lethality in Mice Lacking NEPH1, a Novel Protein with Homology to NEPHRIN , 2001, Molecular and Cellular Biology.

[101]  G. Theophilidis,et al.  An in vitro method for recording the electrical activity of the isolated heart of the adult Drosophila melanogaster , 2001, In Vitro Cellular & Developmental Biology - Animal.

[102]  T. Jentsch Neuronal KCNQ potassium channels:physislogy and role in disease , 2000, Nature Reviews Neuroscience.

[103]  K. Tryggvason,et al.  Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. , 2000, Kidney international.

[104]  Corinne Antignac,et al.  NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000, Nature Genetics.

[105]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[106]  W. Bender,et al.  A Drosophila model of Parkinson's disease , 2000, Nature.

[107]  B. Dickson,et al.  Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. , 2000, Development.

[108]  T. Schwarz,et al.  A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. , 1999, Genetics.

[109]  J. Dow The Multifunctional Drosophila melanogaster V-ATPase Is Encoded by a Multigene Family , 1999, Journal of bioenergetics and biomembranes.

[110]  J. Seidman,et al.  Congenital heart disease caused by mutations in the transcription factor NKX2-5. , 1998, Science.

[111]  L Peltonen,et al.  Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. , 1998, Molecular cell.

[112]  T. Hansen,et al.  Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3) , 1996, Nature.

[113]  K. Kaiser,et al.  Analysis and Inactivation of vha55, the Gene Encoding the Vacuolar ATPase B-subunit in Drosophila melanogaster Reveals a Larval Lethal Phenotype* , 1996, The Journal of Biological Chemistry.

[114]  S. Singh,et al.  Pharmacological analysis of heartbeat in Drosophila. , 1995, Journal of neurobiology.

[115]  P. Deák,et al.  Cloning and functional analysis of tipE, a novel membrane protein that enhances drosophila para sodium channel function , 1995, Cell.

[116]  M. Tanouye,et al.  Seizures and failures in the giant fiber pathway of Drosophila bang- sensitive paralytic mutants , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  H. Atwood,et al.  Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila , 1994, The Journal of comparative neurology.

[118]  J. Littleton,et al.  Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[119]  M. Tanouye,et al.  The Drosophila easily shocked gene: A mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis , 1994, Cell.

[120]  R. Bodmer The gene tinman is required for specification of the heart and visceral muscles in Drosophila. , 1993, Development.

[121]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[122]  M. Bate,et al.  Development of the embryonic neuromuscular synapse of Drosophila melanogaster , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  B. Ganetzky,et al.  Potassium currents in Drosophila: different components affected by mutations of two genes. , 1983, Science.

[124]  R. Kyle,et al.  Thomas Hunt Morgan. , 1981, JAMA.

[125]  R. Wyman,et al.  Anatomy of the giant fibre pathway inDrosophila. I. Three thoracic components of the pathway , 1980, Journal of neurocytology.

[126]  R. Wyman,et al.  Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.

[127]  Y. Jan,et al.  Two Mutations of synaptic transmission in Drosophila , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[128]  Y. Jan,et al.  Properties of the larval neuromuscular junction in Drosophila melanogaster. , 1976, The Journal of physiology.

[129]  W. Stark,et al.  Transient and receptor potentials in the electroretinogram of Drosophila. , 1972, Vision research.

[130]  S. Benzer,et al.  Abnormal Electroretinograms in Visual Mutants of Drosophila , 1969, Nature.

[131]  W. Pak,et al.  Nonphototactic Mutants in a Study of Vision of Drosophila , 1969, Nature.

[132]  W. D. Kaplan,et al.  The behavior of four neurological mutants of Drosophila. , 1969, Genetics.

[133]  Angelika Bonse Untersuchungen über die chemische Natur und die Bildung der Harnkonglomerate in den Malpighischen Gefäßen der Mutante rosy von Drosophila melanogaster , 1967 .

[134]  H. K. Mitchell,et al.  Mutants of Drosophila Melanogaster Deficient in Xanthine Dehydrogenase. , 1959, Genetics.

[135]  H. K. Mitchell,et al.  Hypoxanthine in rosy and maroon-like mutants of Drosophila melanogaster. , 1959, Science.

[136]  C. Dent,et al.  Xanthinuria, an inborn error (or deviation) of metabolism. , 1954, Lancet.

[137]  L. Hodson,et al.  From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. , 2015, American journal of physiology. Endocrinology and metabolism.

[138]  H. Bellen,et al.  Morgan’s Legacy: Fruit Flies and the Functional Annotation of Conserved Genes , 2015, Cell.

[139]  Hidehiko K. Inagaki,et al.  Protocol for quantifying sound-sensing ability of Drosophila melanogaster , 2010, Nature Protocols.

[140]  J. Dow,et al.  The developmental, molecular, and transport biology of Malpighian tubules. , 2010, Annual review of entomology.

[141]  N. Kawada,et al.  Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. , 2009, Journal of atherosclerosis and thrombosis.

[142]  Michael Gribskov,et al.  Homophila: human disease gene cognates in Drosophila , 2002, Nucleic Acids Res..

[143]  C. Cremers,et al.  Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness , 1999, Nature Genetics.

[144]  古田 浩人 Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1999 .

[145]  M. Stoffel,et al.  Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1996, Nature.

[146]  G. Allen Thomas Hunt Morgan , 1978 .

[147]  A. Bonse [Studies on the chemical nature and formation of the urinary conglomerate in the Malpighian vessels of the rosy mutant of Drosophila melanogaster]. , 1967, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.

[148]  E. Hadorn,et al.  [A mutant (rosy2) of Drosophila melanogaster without isoxanthopterin which is non-autonomous for the red eye pigments]. , 1956, Zeitschrift fur induktive Abstammungs- und Vererbungslehre.