A Content-Based Search Method and Its Application for EOS

Advances in Earth observing from space and associated Earth systems numerical simulations have resulted in rapidly growing data volumes for Earth science communities. The NASA’s Earth Observing System (EOS) program alone is producing massive data products with total rates of more than 1.5 Terabytes/day (King and Greenstone, 1999). To find interesting data, data users need an effective and efficient way to search through the data. Traditionally, metadata are provided in a database which support data searching by commonly used criteria such as spatial coverage, temporal coverage, spatial resolution, temporal resolution, etc. (Yang et al., 2002; (GCMD); NASA, 2003). However, metadata search itself may still result in large amounts of data which data users need to know about before determining the usefulness of the underlying data. Content-based data search, that is, searching data based on not only metadata but also actual data content will help data users to narrow down selected data. In fact, this may be the only way to find useful data in the future.

[1]  Ruixin Yang,et al.  Managing Scientific Metadata Using XML , 2002, IEEE Internet Comput..

[2]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[3]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[4]  Hanan Samet,et al.  Applications of spatial data structures , 1989 .

[5]  W. Paul Menzel,et al.  CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT , 2002 .

[6]  Xiaoyang Sean Wang,et al.  A pyramid data model for supporting content-based browsing and knowledge discovery , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[7]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[8]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[9]  Robin Pfister,et al.  Earth Observing System Data Gateway , 2001 .

[10]  Xiaoyang Sean Wang,et al.  Value Range Queries on Earth Science Data via Histogram Clustering , 2000, TSDM.

[11]  Kwang-Su Yang,et al.  Prototype of a value-range query technique on earth sciences data , 2003, 15th International Conference on Scientific and Statistical Database Management, 2003..

[12]  Brian Everitt,et al.  Cluster analysis , 1974 .

[13]  Kwang-Su Yang,et al.  A feasible method to find areas with constraints using hierarchical depth-first clustering , 2001, Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001.

[14]  Antoine Quint,et al.  Scalable Vector Graphics , 2020, Definitions.

[15]  Peter J. Haas,et al.  Improved histograms for selectivity estimation of range predicates , 1996, SIGMOD '96.

[16]  David A. Duce,et al.  Scalable Vector Graphics SVG 1.0 Specification , 2000 .

[17]  M. King,et al.  EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System , 2000 .

[18]  A. Cracknell The advanced very high resolution radiometer , 1997 .

[19]  Hanan Samet,et al.  Hierarchical Spatial Data Structures , 1989, SSD.