Three-dimensional independent control of multiple magnetic microrobots via inter-agent forces

A major challenge for untethered micro-scale mobile robotics is the control of many agents in the same workspace for distributed operation. In this work, we present a new method to independently control multiple sub-mm microrobots in three dimensions (3D) using magnetic gradient based direct pulling as the 3D motion generation method. This is accomplished through the use of geometrically or magnetically distinct microrobots which assume different magnetization directions in a rotating magnetic field. Such diversity in design allows for different magnetic forces to be exerted on each, enabling path following with less than 370μm mean path deviation for a set of two microrobots of size 350μm and 1500μm. This addressability method could be used for the 3D control of a team of microrobots inside microfluidic channels or in the human body for localized therapy or diagnostics.

[1]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[2]  Metin Sitti,et al.  Control methodologies for a heterogeneous group of untethered magnetic micro-robots , 2011, Int. J. Robotics Res..

[3]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[4]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, ICRA.

[5]  Jake J. Abbott,et al.  OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation , 2010, IEEE Transactions on Robotics.

[6]  Pierre E. Dupont,et al.  Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment , 2012, 2012 IEEE International Conference on Robotics and Automation.

[7]  Juho Pokki,et al.  Cooperative manipulation and transport of microobjects using multiple helical microcarriers , 2014 .

[8]  Metin Sitti,et al.  Independent control of multiple magnetic microrobots in three dimensions , 2013, Int. J. Robotics Res..

[9]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[10]  Soichiro Tottori,et al.  Assembly, disassembly, and anomalous propulsion of microscopic helices. , 2013, Nano letters.

[11]  Sylvain Martel,et al.  Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature , 2009, Int. J. Robotics Res..

[12]  Metin Sitti,et al.  Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions , 2013, Int. J. Robotics Res..

[13]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.

[14]  Timothy Bretl,et al.  Controlling many differential-drive robots with uniform control inputs , 2014, Int. J. Robotics Res..

[15]  Eric H. Maslen,et al.  Optimal realization of arbitrary forces in a magnetic stereotaxis system , 1996 .

[16]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[17]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[18]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[19]  Kyle Jiang,et al.  Net shape fabrication of stainless-steel micro machine components from metallic powder , 2008 .

[20]  Metin Sitti,et al.  Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators , 2012 .

[21]  P A Valberg,et al.  Magnetic particle motions within living cells. Physical theory and techniques. , 1987, Biophysical journal.

[22]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[23]  Bradley J. Nelson,et al.  Minimum Bounds on the Number of Electromagnets Required for Remote Magnetic Manipulation , 2015, IEEE Transactions on Robotics.

[24]  George M. Whitesides,et al.  Emergence of reconfigurable wires and spinners via dynamic self-assembly , 2015, Scientific Reports.

[25]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[26]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[27]  David J. Cappelleri,et al.  Controlling multiple microrobots: recent progress and future challenges , 2015 .

[28]  Fei Long,et al.  Three-Dimensional Visual Servo Control of a Magnetically Propelled Microscopic Bead , 2013, IEEE Transactions on Robotics.

[29]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[30]  M. Sitti,et al.  Multiple magnetic microrobot control using electrostatic anchoring , 2009 .