On new chaotic and hyperchaotic systems: A literature survey

This paper provides a thorough survey of new chaotic and hyperchaotic systems. An analysis of the dynamic behavior of these complex systems is presented by pointing out their originality and elementary characteristics. Recently, such systems have been increasingly used in various fields such as secure communication, encryption and finance and so on. In practice, each field requires specific performances with peculiar complexity. A particular classification is then proposed in this paper based on the Lyapunov exponent, the equilibriums points and the attractor forms.

[1]  L. Chua The Genesis of Chua's circuit , 1992 .

[2]  Xianyi Li,et al.  Dynamical properties and simulation of a new Lorenz-like chaotic system , 2011 .

[3]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[4]  Wuneng Zhou,et al.  On dynamics analysis of a novel three-scroll chaotic attractor , 2010, J. Frankl. Inst..

[5]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[6]  Qiang Jia,et al.  Hyperchaos generated from the Lorenz chaotic system and its control , 2007 .

[7]  L. Shilnikov CHUA’S CIRCUIT: RIGOROUS RESULTS AND FUTURE PROBLEMS , 1994 .

[8]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[9]  Wei Zhang,et al.  Chaotification of nonlinear discrete systems via immersion and invariance , 2011 .

[10]  Marcelo A. Savi,et al.  Chaos control applied to cardiac rhythms represented by ECG signals , 2014 .

[11]  Ursula Faber,et al.  Controlling Chaos Suppression Synchronization And Chaotification , 2016 .

[12]  Zengqiang Chen,et al.  A novel hyperchaos system only with one equilibrium , 2007 .

[13]  Esteban Tlelo-Cuautle,et al.  Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators , 2014 .

[14]  Tao Wang,et al.  Generation and Modified Projective Synchronization for a Class of New Hyperchaotic Systems , 2013 .

[15]  Hüseyin Koçak,et al.  Lyapunov Exponents and Sensitive Dependence , 2010 .

[16]  Wei Zhang,et al.  A new three-dimensional chaotic system with wide range of parameters , 2013 .

[17]  王发强,et al.  Hyperchaos evolved from the Liu chaotic system , 2006 .

[18]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[19]  Xing-yuan Wang,et al.  HYPERCHAOS Qi SYSTEM , 2010 .

[20]  A. Zerroug,et al.  Chaotic Dynamical Behavior of Recurrent Neural Network , 2013 .

[21]  Guoliang Cai,et al.  Dynamic analysis and control of a new hyperchaotic finance system , 2012 .

[22]  Chun-Lai Li,et al.  Analysis of a novel three-dimensional chaotic system , 2013 .

[23]  Fangfang Zhang,et al.  Complex function projective synchronization of complex chaotic system and its applications in secure communication , 2013, Nonlinear Dynamics.

[24]  Zhanshan Wang,et al.  Anti-Synchronization of Markovian Jumping Stochastic Chaotic Neural Networks with Mixed Time Delays , 2014, Circuits Syst. Signal Process..

[25]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[26]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[27]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[28]  Weisheng Chen,et al.  Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems , 2014 .

[29]  李锐,et al.  Circuitry implementation of a novel four-dimensional nonautonomous hyperchaotic Liu system and its experimental studies on synchronization control ⁄ , 2009 .

[30]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[31]  Zhang Huaguang,et al.  A new hyperchaotic system and its circuit implementation , 2010 .

[32]  Lixin Tian,et al.  A novel 3D autonomous system with different multilayer chaotic attractors , 2009 .

[33]  Xing-yuan Wang,et al.  HYPERCHAOS GENERATED FROM QI SYSTEM AND ITS OBSERVER , 2009 .

[34]  Zhen Wang,et al.  A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system , 2013 .

[35]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[36]  Zhi-Hong Guan,et al.  Analysis of a new three-dimensional system with multiple chaotic attractors , 2014 .

[37]  I. Campos-Cantón,et al.  Difference map and its electronic circuit realization , 2013 .

[38]  Guanrong Chen,et al.  A HYPERCHAOS GENERATED FROM CHEN'S SYSTEM , 2006 .

[39]  Guanrong Chen,et al.  A new hyperchaotic Lorenz‐type system: Generation, analysis, and implementation , 2011, Int. J. Circuit Theory Appl..

[40]  O. Rössler An equation for continuous chaos , 1976 .

[41]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[42]  Chunhua Wang,et al.  Grid multi-wing butterfly chaotic attractors generated from a new 3-D quadratic autonomous system , 2014 .

[43]  C. K. Michael Tse,et al.  A New hyperchaotic System and its Circuit Implementation , 2010, Int. J. Bifurc. Chaos.

[44]  王震,et al.  A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system , 2013 .

[45]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[46]  Hongyan Jia,et al.  Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures , 2014 .

[47]  Chunhua Wang,et al.  Generating variable number of wings from a novel four-dimensional hyperchaotic system with one equilibrium , 2014 .

[48]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[49]  Chun-Lai Li,et al.  A new hyperchaotic system and its generalized synchronization , 2014 .

[50]  Xing-yuan Wang,et al.  A novel image encryption algorithm based on dynamic S-boxes constructed by chaos , 2013, Nonlinear Dynamics.

[51]  Ping Zhou,et al.  Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points , 2014 .

[52]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[53]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[54]  Sara Dadras,et al.  Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form , 2012 .

[55]  Guanrong Chen,et al.  On a four-dimensional chaotic system , 2005 .

[56]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[57]  Ningning Yang,et al.  A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control , 2013 .

[58]  Xingyuan Wang,et al.  Chaos and bifurcations in chaotic maps with parameter q: Numerical and analytical studies , 2015 .

[59]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[60]  Qigui Yang,et al.  A new Lorenz-type hyperchaotic system with a curve of equilibria , 2015, Math. Comput. Simul..

[61]  Andrew Y. T. Leung,et al.  Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method , 2014 .

[62]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[63]  J. Dingwell,et al.  LYAPUNOV EXPONENTS , 2006 .

[64]  Guanrong Chen,et al.  The generation and circuit implementation of a new hyper-chaos based upon Lorenz system , 2007 .

[65]  Olfa Boubaker,et al.  Chaos synchronization for master slave piecewise linear systems: Application to Chua's circuit , 2012 .

[66]  Yongjian Liu,et al.  A new hyperchaotic system from the Lü system and its control , 2011, J. Comput. Appl. Math..

[67]  Guanrong Chen,et al.  Analysis of a new chaotic system , 2005 .