W43: the closest molecular complex of the Galactic bar?

We used a large database extracted from Galaxy-wide surveys of H {\scriptsize I}, $^{13}$CO 1-0, $8 \micron$ and $870 \micron$ continuum to trace diffuse atomic gas, low- to medium-density molecular gas, high-density molecular gas, and star formation activity which we complemented by dedicated $^{12}$CO 2--1, 3--2 observations of the W43 region. From the detailed 3D (space-space-velocity) analysis of the molecular and atomic cloud tracers through the region and despite its wide velocity range (\emph{FWHM}$\sim22.3 \kms$ around $\vlsr\sim 95.9 \kms$), we identified W43 as a large (equivalent diameter $\sim 140$ pc) and coherent complex of molecular clouds which is surrounded by an atomic gas envelope (equivalent diameter $\sim 290$ pc). We measured the total mass of this newly-identified molecular complex ($M_{{\tiny total}}\sim 7.1 \times 10^6 \msun$), the mass contained in dense $870 \micron$ clumps ($<5$ pc dense cloud structures, $M_{{\tiny clumps}}\sim 8.4 \times 10^5 \msun$) and conclude that W43 is particularly massive and concentrated. The distance we assume for the W43 complex is 6 kpc from the Sun, which may place it at the meeting point of the Scutum-Centaurus (or Scutum-Crux) Galactic arm and the Bar, a dynamically complex region where high-velocity streams could easily collide. The star formation rate of W43 is suggested not to be steady but it is increasing from $\, \sim 0.01 \msun\, {yr}^{-1}$ (measured from its $8\,\mu$m luminosity) to $\sim 0.1 \msun\, {yr}^{-1}$ (measured from its molecular content). From the global properties of W43, we claim it is an extreme molecular complex in the Milky Way and it could even be forming starburst clusters in the near future.

[1]  S. Bontemps,et al.  Giving physical significance to the Hi-GAL data: determining the distance of cold dusty cores in the Milky Way , 2011 .

[2]  A. Ginsburg,et al.  Herschel observations of the W43 “mini-starburst” , 2010, 1005.4092.

[3]  J. Ott,et al.  MOLECULAR AND ATOMIC GAS IN THE LARGE MAGELLANIC CLOUD. II. THREE-DIMENSIONAL CORRELATION BETWEEN CO AND H i , 2009, 0909.0382.

[4]  S. L. Scott,et al.  DYNAMICALLY DRIVEN EVOLUTION OF THE INTERSTELLAR MEDIUM IN M51 , 2009, 0907.1656.

[5]  J. Rathborne,et al.  KINEMATIC DISTANCES TO MOLECULAR CLOUDS IDENTIFIED IN THE GALACTIC RING SURVEY , 2009, 0905.0723.

[6]  R. Indebetouw,et al.  The Spitzer/GLIMPSE Surveys: A New View of the Milky Way , 2009 .

[7]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[8]  L. Anderson,et al.  RESOLUTION OF THE DISTANCE AMBIGUITY FOR GALACTIC H ii REGIONS , 2008, 0810.5570.

[9]  L. Hartmann,et al.  Rapid Molecular Cloud and Star Formation: Mechanisms and Movies , 2008, 0808.1078.

[10]  N. Rodríguez-Fernández,et al.  Gas flow models in the Milky Way embedded bars , 2008, 0806.4252.

[11]  P. Goldsmith,et al.  Resolving distance ambiguities towards 6.7 GHz methanol masers , 2008, 0805.2697.

[12]  R. Klessen,et al.  From the warm magnetized atomic medium to molecular clouds , 2008, 0805.1366.

[13]  S. Bontemps,et al.  The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X , 2007, 0708.2774.

[14]  E. Bergin,et al.  Dust and gas emission in the prototypical hot core G29.96-0.02 at sub-arcsecond resolution , 2007, 0704.0518.

[15]  R. Klessen,et al.  Molecular Cloud Evolution. II. From Cloud Formation to the Early Stages of Star Formation in Decaying Conditions , 2006, astro-ph/0608375.

[16]  T. Mahoney,et al.  The Long Bar in the Milky Way: Corroboration of an Old Hypothesis , 2006, astro-ph/0606201.

[17]  J. Stil,et al.  Accepted for Publication in the Astronomical Journal the Vla Galactic Plane Survey Accepted for Publication in the Astronomical Journal , 2022 .

[18]  J. Rathborne,et al.  The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey , 2005, astro-ph/0602160.

[19]  Chen Cao,et al.  PAH and Mid-Infrared Luminosities as Measures of Star Formation Rate in Spitzer First Look Survey Galaxies , 2005, astro-ph/0509281.

[20]  L. Chomiuk,et al.  First GLIMPSE Results on the Stellar Structure of the Galaxy , 2005, astro-ph/0508325.

[21]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[22]  R. Indebetouw,et al.  GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy , 2003, astro-ph/0306274.

[23]  F. Motte,et al.  From Massive Protostars to a Giant H II Region: Submillimeter Imaging of the Galactic Ministarburst W43 , 2002, astro-ph/0208519.

[24]  D. Russeil,et al.  Star-forming complexes and the spiral structure of our Galaxy , 2003 .

[25]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[26]  T. M. Bania,et al.  The Structure of Four Molecular Cloud Complexes in the BU-FCRAO Milky Way Galactic Ring Survey , 2001 .

[27]  J. Carpenter,et al.  The Equilibrium State of Molecular Regions in the Outer Galaxy , 2001, astro-ph/0101133.

[28]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[29]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[30]  T. Mahoney,et al.  Detection of the old stellar component of the major Galactic bar , 2000, astro-ph/0007232.

[31]  E. Bergin,et al.  High-Angular Resolution Millimeter-Wave and Near-Infrared Imaging of the Ultracompact H II Region G29.96–0.02 , 1999 .

[32]  P. Conti,et al.  The Stellar Content of Obscured Galactic Giant H II Regions. II. W42 , 1998, astro-ph/0001157.

[33]  J. Carpenter,et al.  The W51 Giant Molecular Cloud , 1998, astro-ph/9806298.

[34]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[35]  A. Watson,et al.  Near-Infrared Spectroscopy of G29.96–0.02: The First Spectral Classification of the Ionizing Star of an Ultracompact H II Region , 1997, astro-ph/9709120.

[36]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[37]  H. Liszt Molecular Gas in the Core of W43 (G30.8+0.0) , 1995 .

[38]  L. Blitz,et al.  Proto--Brown Dwarfs. I. Methods and Results for High-Latitude Clouds , 1993 .

[39]  R. Rand Density wave kinematics and giant molecular association formation in M51 , 1993 .

[40]  R. Rand,et al.  M51: molecular spiral arms, giant molecular associations, and superclouds , 1990 .

[41]  E. Churchwell,et al.  Massive stars embedded in molecular clouds - Their population and distribution in the galaxy , 1989 .

[42]  B. Elmegreen,et al.  H I superclouds in the inner Galaxy , 1987 .

[43]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[44]  B. Elmegreen,et al.  The largest molecular cloud complexes in the first galactic quadrant , 1986 .

[45]  T. L. Wilson,et al.  Tools of Radio Astronomy , 1986 .

[46]  R. L. Brown,et al.  Star formation in the inner Galaxy - A far-infrared and radio study of two H II regions , 1985 .

[47]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .