High structural quality InN∕In0.75Ga0.25N multiple quantum wells grown by molecular beam epitaxy

InN/In0.75Ga0.25N multiple quantum wells (MQWs) were grown by rf plasma-assisted molecular beam epitaxy. The high-resolution transmission electron microscope and x-ray diffraction measurements show ...

[1]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[2]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[3]  N. Teraguchi,et al.  Growth Temperature Dependence of Indium Nitride Crystalline Quality Grown by RF‐MBE , 2002 .

[4]  S. Yoshida,et al.  Fine-structure N-polarity InN∕InGaN multiple quantum wells grown on GaN underlayer by molecular-beam epitaxy , 2005 .

[5]  C. Shih,et al.  Band Offsets of InN/GaN Interface , 2005 .

[6]  Fischer,et al.  New approach in equilibrium theory for strained layer relaxation. , 1994, Physical review letters.

[7]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[8]  E. Haller,et al.  Effects of hydrostatic pressure on optical properties of InN and In‐rich group III‐nitride alloys , 2004 .

[9]  Hiroshi Harima,et al.  Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .

[10]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[11]  Katsumi Kishino,et al.  Intersubband transition in (GaN)m/(AlN)n superlattices in the wavelength range from 1.08 to 1.61 μm , 2002 .

[12]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[13]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[14]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[15]  T. Araki,et al.  Recent development of InN RF-MBE growth and its structural and property characterization , 2004 .