SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz

The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95 GHz. The 43 GHz results have been published in a previous paper, and here we report the measurement of CMB polarization power spectra using the 95 GHz data. This data set comprises 5337 hr of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 μK. Four low-foreground fields were observed, covering a total of ∼1000 deg2 with an effective angular resolution of 12.′8, allowing for constraints on primordial gravitational waves and high signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-Cℓ (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB, and BB power spectra between ℓ = 25 and 975 and find that the EE spectrum is consistent with ΛCDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1+0.9 − 0.8 (r < 2.8 at 95% C.L.) as derived by the ML pipeline, and r = 1.2+0.9 − 0.8 (r < 2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.

[1]  M. Kamionkowski,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1996, astro-ph/9609132.

[2]  J. R. Bond,et al.  Implications of the Cosmic Background Imager Polarization Data , 2007 .

[3]  S. Padin,et al.  The Cosmic Background Imager , 2000, astro-ph/0012212.

[4]  Giuseppe Bertin,et al.  Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity , 2012 .

[5]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[6]  P. Steinhardt,et al.  Inflationary predictions for scalar and tensor fluctuations reconsidered. , 2005, Physical review letters.

[7]  Ruth A. Daly,et al.  Cosmological Inflation and Large-Scale Structure , 2001 .

[8]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[9]  L. Toffolatti,et al.  The impact of polarized extragalactic radio sources on the detection of CMB anisotropies in polarization , 2012, 1204.0427.

[10]  R. Reeves QUIET Coherent Polarimeter Modules , 2012 .

[11]  M. Halpern,et al.  The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers , 2009, 1008.3915.

[12]  L. Newburgh MEASURING CMB POLARIZATION WITH QUIET: THE Q/U IMAGING EXPERIMENT , 2012 .

[13]  Edward J. Wollack,et al.  The cosmology large angular scale surveyor (CLASS): 40 GHz optical design , 2012, Other Conferences.

[14]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[15]  S. R. Golwala,et al.  SPIDER: a balloon-borne large-scale CMB polarimeter , 2008, Astronomical Telescopes + Instrumentation.

[16]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[17]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[18]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[19]  Aaron J. Miller,et al.  The Thirteenth International Workshop on Low Temperature DETECTORS-LTD13 , 2009 .

[20]  J. A. Bonetti,et al.  The BICEP2 CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[21]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[22]  T. Damour,et al.  The twelfth Marcel Grossmann Meeting : on recent developments in theoretical and experimental general relativity, astrophysics and relativistic field theories : proceedings of the MG12 meeting on general relativity, UNESCO Headquarters, Paris, France 12-18 July 2009 , 2012 .

[23]  P. A. R. Ade,et al.  MAXIPOL: Data Analysis and Results , 2006, astro-ph/0611392.

[24]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[25]  Raul A. Monsalve,et al.  Beam characterization for the QUIET Q-Band instrument using polarized and unpolarized astronomical sources , 2010, Astronomical Telescopes + Instrumentation.

[26]  M. Lueker,et al.  SPTpol: an instrument for CMB polarization. , 2009 .

[27]  D. Barkats,et al.  New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz , 2008 .

[28]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[29]  John E. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2005 .

[30]  J. Aumont,et al.  Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments , 2009, 0912.1751.

[31]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[32]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: BAYESIAN ESTIMATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION MAPS , 2008, 0811.4280.

[33]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[34]  Aaron Roodman,et al.  Blind Analysis in Nuclear and Particle Physics , 2005 .

[35]  Fast cosmic microwave background power spectrum estimation of temperature and polarization with Gabor transforms , 2002, astro-ph/0207526.

[36]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[37]  I. Buder,et al.  FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ ⩽ 475 , 2010, 1012.3191.

[38]  Dominic J. Benford,et al.  5,120 superconducting bolometers for the PIPER balloon-borne CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[39]  P. A. R. Ade,et al.  Antenna-coupled TES bolometers for the Keck array, Spider, and Polar-1 , 2012, Other Conferences.

[40]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[41]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[42]  P. A. R. Ade,et al.  MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA , 2009, 0906.1181.

[43]  A. Melchiorri,et al.  A Measurement of the CMB ⟨EE⟩ Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[44]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[45]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[46]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES , 2010, 1001.4731.

[47]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[48]  R. O'Brient,et al.  The POLARBEAR CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[49]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[50]  I. Buder,et al.  Novel Calibration System with Sparse Wires for CMB Polarization Receivers , 2011 .

[51]  Kieran Cleary,et al.  Coherent polarimeter modules for the QUIET experiment , 2010, Astronomical Telescopes + Instrumentation.

[52]  Adrian T. Lee,et al.  The EBEX experiment , 2004, SPIE Optics + Photonics.