ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of Direct Blue 71 in aqueous environments.

[1]  George P. Anipsitakis,et al.  Radical generation by the interaction of transition metals with common oxidants. , 2004, Environmental science & technology.

[2]  David J. Singh,et al.  First-principles investigation of MnFe2O4 , 2002 .

[3]  P. Phukan,et al.  CoFe2O4–ZnS nanocomposite: a magnetically recyclable photocatalyst , 2012 .

[4]  Z. Y. Xue,et al.  Photoluminescence of ZnO films excited with light of different wavelength , 2003 .

[5]  S. Anandan,et al.  Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles , 2011 .

[6]  K. Fytianos,et al.  Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. , 2006, Journal of hazardous materials.

[7]  Antonius Kettrup,et al.  Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study , 2004 .

[8]  B. Weckhuysen,et al.  Chemometric analysis of diffuse reflectance spectra of Co2+-exchanged zeolites: spectroscopic fingerprinting of coordination environments , 1997 .

[9]  S. Anandan,et al.  Synthesis of Ag-ZnO nanoparticles for enhanced photocatalytic degradation of acid red 88 in aqueous environment. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[10]  Simon Judd,et al.  Characterisation of textile wastewaters ‐ a review , 1994 .

[11]  S. Anandan,et al.  Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites , 2003 .

[12]  Yuanhua Lin,et al.  Effect of ZnO-doping on the reaction between Co and Fe oxides , 2006 .

[13]  S. Patil,et al.  Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. , 1988, Environmental science & technology.

[14]  Congju Li,et al.  A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV-vis light , 2012 .

[15]  Peter Spietz,et al.  High-resolution absorption cross-section of glyoxal in the UV–vis and IR spectral ranges , 2005 .

[16]  M. H. Jung,et al.  Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst , 2009 .

[17]  T. Swaminathan,et al.  Synthesis of Fe3 doped TiO2 photocatalysts for the visible assisted degradation of an azo dye , 2011 .

[18]  R. Crawford,et al.  Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus , 1992, Applied and environmental microbiology.

[19]  L. A. García-Cerda,et al.  Preparation and characterization of cobalt ferrite by the polymerized complex method , 2005 .

[20]  Peng Sun,et al.  Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites. , 2009, The journal of physical chemistry. B.

[21]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[22]  P. Chiang,et al.  The decolorization and mineralization of acid orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study. , 2007, Journal of hazardous materials.

[23]  I. Balcioglu,et al.  Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes : a comparative study , 1999 .

[24]  Yu-Jun Zhao,et al.  Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a first-principles study , 2010 .

[25]  D. Hempel,et al.  Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium , 1991, Applied and environmental microbiology.

[26]  Shou-Qing Liu,et al.  Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants , 2012, Environmental Chemistry Letters.

[27]  Xinyong Li,et al.  Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 particles with porous superstructure fabricated by a modified chemical coprecipitation method , 2011 .

[28]  Frank E. Osterloh,et al.  Heterogeneous Photocatalysis , 2021 .

[29]  A. Yediler,et al.  Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation , 2002 .

[30]  U. Pagga,et al.  Development of a method for adsorption of dyestuffs on activated sludge , 1994 .

[31]  M. Ashokkumar,et al.  Kinetics of degradation of acid red 88 in the presence of Co2+-ion/peroxomonosulphate reagent , 2009 .

[32]  Debabrata Chatterjee,et al.  Visible light induced photocatalytic degradation of organic pollutants , 2005 .

[33]  S. Anandan,et al.  Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88 , 2008 .

[34]  A. T. Moore,et al.  Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator , 1989 .

[35]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[36]  Q. Jia,et al.  Magnetic Properties of Self-Assembled Epitaxial Nanocomposite CoFe2O4:SrTiO3 and CoFe2O4:MgO Films , 2011 .

[37]  G. H. Jonker Analysis of the semiconducting properties of cobalt ferrite , 1959 .

[38]  M. Habibi,et al.  Photocatalytic degradation of an azo dye X6G in water: A comparative study using nanostructured indium tin oxide and titanium oxide thin films , 2007 .

[39]  Guoxin Zhang,et al.  Preparation and characterization of multi-functional CoFe2O4–ZnO nanocomposites , 2009 .

[40]  M. Ashokkumar,et al.  Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. , 2010, Chemosphere.

[41]  David J. Singh,et al.  First-principles investigation of MnFe 2 O 4 , 2002 .