Towards a new ode solver based on cartan's equivalence method
暂无分享,去创建一个
[1] A. Valenti,et al. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics , 2012 .
[2] François Boulier,et al. Réécriture algébrique dans les systèmes d'équations différentielles polynomiales en vue d'applications dans les Sciences du Vivant , 2006 .
[3] Evelyne Hubert,et al. Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..
[4] J. Vickers. EQUIVALENCE, INVARIANTS AND SYMMETRY , 1997 .
[5] E. Cheb-Terrab,et al. Computer Algebra Solving of Second Order ODEs Using Symmetry Methods , 1997, gr-qc/9703082.
[6] E. Cheb-Terrab,et al. Computer algebra solving of first order ODEs using symmetry methods , 1996, gr-qc/9607037.
[7] François Boulier,et al. Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.
[8] N. Kamran,et al. Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries , 1989 .
[9] A. Fordy. APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .
[10] P. Olver,et al. Differential Invariants for Lie Pseudo-groups , 2007 .
[11] R. Dridi. Utilisation de la méthode d'équivalence de Cartan dans la construction d'un solveur d'équations différentielles , 2007 .
[12] G. Casale. Sur le groupoide de Galois d'un feuilletage , 2004 .
[13] Sylvain Neut,et al. Implantation et nouvelles applications de la méthode d'équivalence de Cartan , 2003 .
[14] G. Reid,et al. A Point Symmetry Group of a Differential Equation which cannot be Found Using Infinitesimal Methods , 1993 .
[15] Valentin Lychagin,et al. Geometry of jet spaces and nonlinear partial differential equations , 1986 .
[16] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[17] E. Kamke. Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .
[18] E. Cartan. Les problèmes d'équivalence , 1937 .