Towards a new ode solver based on cartan's equivalence method

The aim of the present paper is to propose an algorithm for a new ODE-solver which should improve the abilities of current solvers to handle second order differential equations. The paper provides also a theoretical result revealing the relationship between the change of coordinates, that maps the generic equation to a given target equation, and the symmetry D-groupoid of this target.

[1]  A. Valenti,et al.  Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics , 2012 .

[2]  François Boulier,et al.  Réécriture algébrique dans les systèmes d'équations différentielles polynomiales en vue d'applications dans les Sciences du Vivant , 2006 .

[3]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[4]  J. Vickers EQUIVALENCE, INVARIANTS AND SYMMETRY , 1997 .

[5]  E. Cheb-Terrab,et al.  Computer Algebra Solving of Second Order ODEs Using Symmetry Methods , 1997, gr-qc/9703082.

[6]  E. Cheb-Terrab,et al.  Computer algebra solving of first order ODEs using symmetry methods , 1996, gr-qc/9607037.

[7]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[8]  N. Kamran,et al.  Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries , 1989 .

[9]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[10]  P. Olver,et al.  Differential Invariants for Lie Pseudo-groups , 2007 .

[11]  R. Dridi Utilisation de la méthode d'équivalence de Cartan dans la construction d'un solveur d'équations différentielles , 2007 .

[12]  G. Casale Sur le groupoide de Galois d'un feuilletage , 2004 .

[13]  Sylvain Neut,et al.  Implantation et nouvelles applications de la méthode d'équivalence de Cartan , 2003 .

[14]  G. Reid,et al.  A Point Symmetry Group of a Differential Equation which cannot be Found Using Infinitesimal Methods , 1993 .

[15]  Valentin Lychagin,et al.  Geometry of jet spaces and nonlinear partial differential equations , 1986 .

[16]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[17]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[18]  E. Cartan Les problèmes d'équivalence , 1937 .