On the NP-completeness of the Slither Link Puzzle
暂无分享,去创建一个
[1] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.
[2] John Michael Robson,et al. The Complexity of Go , 1983, IFIP Congress.
[3] Manfred K. Warmuth,et al. Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.
[4] Shigeki Iwata,et al. The Othello game on an n*n board is PSPACE-complete , 1994, Theor. Comput. Sci..
[5] John Michael Robson,et al. N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..
[6] Ioannis G. Tollis,et al. Graph Drawing , 1994, Lecture Notes in Computer Science.
[7] M. Garey. Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .
[8] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[9] Stefan Reisch,et al. Gobang ist PSPACE-vollständig , 2004, Acta Informatica.
[10] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[11] N. Ueda,et al. NP-completeness Results for NONOGRAM via Parsimonious Reductions , 1996 .
[12] Joseph Culberson,et al. Sokoban is PSPACE-complete , 1997 .