On the Materials Science of Nature's Arms Race

Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed.

[1]  Shawn Hoon,et al.  Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. , 2015, Nature chemical biology.

[2]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[3]  M. Hamrick Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws , 2001, Evolution & development.

[4]  Steve Weiner,et al.  Materials design in biology , 2000 .

[5]  Christine Ortiz,et al.  Stiffness and strength of suture joints in nature. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  S. Rammensee,et al.  Assembly mechanism of recombinant spider silk proteins , 2008, Proceedings of the National Academy of Sciences.

[7]  M. Burghammer,et al.  Structure-property relationships of a biological mesocrystal in the adult sea urchin spine , 2012, Proceedings of the National Academy of Sciences.

[8]  M. Okazaki,et al.  Differences in solubility of two types of heterogeneous fluoridated hydroxyapatites. , 1998, Biomaterials.

[9]  C. W. Wu,et al.  Mosquito proboscis: an elegant biomicroelectromechanical system. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Rakesh Kumar,et al.  Mechanical behaviour of bamboo and bamboo composite , 1992 .

[11]  M. Meyers,et al.  Structure and mechanical properties of crab exoskeletons. , 2008, Acta biomaterialia.

[12]  P. Fratzl,et al.  Fibrillar structure and mechanical properties of collagen. , 1998, Journal of structural biology.

[13]  G. Fraser,et al.  Evolution and developmental diversity of tooth regeneration. , 2014, Seminars in cell & developmental biology.

[14]  Zi-Long Zhao,et al.  Structures, properties, and functions of the stings of honey bees and paper wasps: a comparative study , 2015, Biology Open.

[15]  Himadri S. Gupta,et al.  Deformation and Fracture Mechanisms of Bone and Nacre , 2011 .

[16]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[17]  Wen Yang,et al.  Mechanical adaptability of the Bouligand-type structure in natural dermal armour , 2013, Nature Communications.

[18]  Shahrouz Amini,et al.  The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. , 2015, Nature materials.

[19]  L. Packer Comparative morphology of the skeletal parts of the sting apparatus of bees (Hymenoptera: Apoidea) , 2003 .

[20]  M K Ramasubramanian,et al.  Mechanics of a mosquito bite with applications to microneedle design , 2007, Bioinspiration & biomimetics.

[21]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[22]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[23]  Frank W. Zok,et al.  The Transition from Stiff to Compliant Materials in Squid Beaks , 2008, Science.

[24]  G. Marshall,et al.  The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. , 2003, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[25]  P. Hansma,et al.  Exploring molecular and mechanical gradients in structural bioscaffolds. , 2004, Biochemistry.

[26]  T. P. King,et al.  Structure and Biology of Stinging Insect Venom Allergens , 2000, International Archives of Allergy and Immunology.

[27]  David B. Wake,et al.  Salamander with a ballistic tongue , 1997, Nature.

[28]  R. Reisz,et al.  Histological microstructure of the claws of the African clawed frog, Xenopus laevis (Anura: Pipidae): implications for the evolution of claws in tetrapods. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[29]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[30]  Francois Barthelat,et al.  Skin and scales of teleost fish: Simple structure but high performance and multiple functions , 2014 .

[31]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[32]  Qianqian Wang,et al.  Stress and Damage Mitigation from Oriented Nanostructures within the Radular Teeth of Cryptochiton stelleri , 2014 .

[33]  B. Lawn,et al.  Analysis of fracture and deformation modes in teeth subjected to occlusal loading. , 2009, Acta biomaterialia.

[34]  Peter Fratzl,et al.  Enamel-like apatite crown covering amorphous mineral in a crayfish mandible , 2012, Nature Communications.

[35]  Z. Zhang,et al.  Mechanical behavior of mother-of-pearl and pearl with flat and spherical laminations. , 2016, Materials science & engineering. C, Materials for biological applications.

[36]  M. Meyers,et al.  Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration , 2016 .

[37]  C. Mattheck,et al.  The claw of the tiger: An assessment of its mechanical shape optimization , 1991 .

[38]  Xi-Qiao Feng,et al.  Study of biomechanical, anatomical, and physiological properties of scorpion stingers for developing biomimetic materials. , 2016, Materials science & engineering. C, Materials for biological applications.

[39]  Wen Yang,et al.  Natural Flexible Dermal Armor , 2013, Advanced materials.

[40]  Jerker Widengren,et al.  Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation , 2014, Nature Communications.

[41]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[42]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[43]  David J. Benson,et al.  The toucan beak: Structure and mechanical response , 2006 .

[44]  Lei Jiang,et al.  Bio-inspired superoleophobic and smart materials: Design, fabrication, and application , 2013 .

[45]  James C. Weaver,et al.  Analysis of an ultra hard magnetic biomineral in chiton radular teeth , 2010 .

[46]  R. Ritchie,et al.  Enhanced protective role in materials with gradient structural orientations: Lessons from Nature. , 2016, Acta biomaterialia.

[47]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[48]  Xi-Qiao Feng,et al.  Spear and Shield: Survival War between Mantis Shrimps and Abalones , 2015 .

[49]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[50]  D. Emlen The Evolution of Animal Weapons , 2008 .

[51]  W. Guo,et al.  Experimental study on the mechanical properties of the horn sheaths from cattle , 2010, Journal of Experimental Biology.

[52]  J. McKittrick,et al.  Microstructure, elastic properties and deformation mechanisms of horn keratin. , 2010, Acta biomaterialia.

[53]  Wen Yang,et al.  Leatherback sea turtle shell: A tough and flexible biological design. , 2015, Acta biomaterialia.

[54]  H. Espinosa,et al.  Materials science: Lessons from tooth enamel , 2017, Nature.

[55]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[56]  J. Currey,et al.  The mechanical properties of red deer antler bone when used in fighting , 2009, Journal of Experimental Biology.

[57]  Derk Joester,et al.  Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth , 2011, Nature.

[58]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[59]  A. R. Ennos,et al.  The fracture properties and mechanical design of human fingernails , 2004, Journal of Experimental Biology.

[60]  Yubo Fan,et al.  Why Do Woodpeckers Resist Head Impact Injury: A Biomechanical Investigation , 2011, PloS one.

[61]  Thomas Schlegel,et al.  Small Circuits for Large Tasks: High-Speed Decision-Making in Archerfish , 2008, Science.

[62]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[63]  Marc A. Meyers,et al.  Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications , 2017 .

[64]  André R Studart,et al.  Additive manufacturing of biologically-inspired materials. , 2016, Chemical Society reviews.

[65]  Hrishikesh V. Pathak,et al.  Unique fatality due to claw injuries in a tiger attack: a case report. , 2014, Legal medicine.

[66]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[67]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[68]  R. Ritchie,et al.  Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation. , 2016, Journal of the mechanical behavior of biomedical materials.

[69]  Zengqian Liu,et al.  Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties , 2015, Scientific Reports.

[70]  Zani The comparative evolution of lizard claw and toe morphology and clinging performance , 2000 .

[71]  P. M. Butler Development, Function and Evolution of Teeth: The evolution of tooth shape and tooth function in primates , 2000 .

[72]  R. Caldwell,et al.  Biomechanics: Deadly strike mechanism of a mantis shrimp , 2004, Nature.

[73]  D. Raabe,et al.  Influence of Structural Principles on the Mechanics of a Biological Fiber‐Based Composite Material with Hierarchical Organization: The Exoskeleton of the Lobster Homarus americanus , 2009 .

[74]  J. Waite,et al.  Cutting edge structural protein from the jaws of Nereis virens. , 2008, Biomacromolecules.

[75]  Mo Li,et al.  Biomimeitc design of a stubble-cutting disc using finite element analysis , 2013 .

[76]  Yasuaki Seki,et al.  Structure and mechanical behavior of a toucan beak , 2005 .

[77]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[78]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[79]  André R Studart,et al.  Towards High‐Performance Bioinspired Composites , 2012, Advanced materials.

[80]  H. Wagner,et al.  Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. , 2013, Acta biomaterialia.

[81]  K. Johnson,et al.  Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties. , 2017, Acta biomaterialia.

[82]  Christine Ortiz,et al.  Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. , 2014, Nature materials.

[83]  Shahrouz Amini,et al.  The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility , 2015 .

[84]  M. Meyers,et al.  Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. , 2016, Acta biomaterialia.

[85]  Eric M. Arndt,et al.  Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation , 2015, Science.

[86]  J. Videler,et al.  Radular teeth as models for the improvement of industrial cutting devices , 1999 .

[87]  Y. Ikuhara,et al.  Fluorine in shark teeth: its direct atomic-resolution imaging and strengthening function. , 2014, Angewandte Chemie.

[88]  D. Raabe,et al.  Ultrastructural organization and micromechanical properties of shark tooth enameloid. , 2014, Acta biomaterialia.

[89]  Eduardo Saiz,et al.  Designing highly toughened hybrid composites through nature-inspired hierarchical complexity , 2009 .

[90]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[91]  G. Schneider,et al.  On the mechanical properties of hierarchically structured biological materials. , 2010, Biomaterials.

[92]  D. Raabe,et al.  Structure, composition, and mechanical properties of shark teeth. , 2012, Journal of structural biology.

[93]  Richard Weinkamer,et al.  Mechanical adaptation of biological materials — The examples of bone and wood , 2011 .

[94]  Robert O Ritchie,et al.  Bone as a Structural Material , 2015, Advanced healthcare materials.

[95]  B. Schmitz,et al.  How snapping shrimp snap: through cavitating bubbles. , 2000, Science.

[96]  Sang-Hee Yoon,et al.  A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems , 2011, Bioinspiration & biomimetics.

[97]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[98]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[99]  E. Moreno,et al.  Fluoridated Hydroxyapatite Solubility and Caries Formation , 1974, Nature.

[100]  M. Horstemeyer,et al.  Hierarchical multiscale structure–property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak , 2014, Journal of The Royal Society Interface.

[101]  Marc A. Meyers,et al.  Battle in the Amazon: Arapaima versus Piranha , 2012 .

[102]  K Ghavami,et al.  Mechanical properties of functionally graded hierarchical bamboo structures. , 2011, Acta biomaterialia.

[103]  H. Espinosa,et al.  Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. , 2017, Acta biomaterialia.

[104]  Seiji Aoyagi,et al.  Combined Harpoonlike Jagged Microneedles Imitating Mosquito's Proboscis and Its Insertion Experiment with Vibration , 2008 .

[105]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[106]  M. Inbar,et al.  Conspicuous and aposematic spines in the animal kingdom , 2005, Naturwissenschaften.

[107]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[108]  Richard Weinkamer,et al.  Artful interfaces within biological materials , 2011 .

[109]  J McKittrick,et al.  Axial compression of a hollow cylinder filled with foam: a study of porcupine quills. , 2013, Acta biomaterialia.

[110]  J. Ralphs,et al.  Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load , 2006, Journal of anatomy.

[111]  Tarah N. Sullivan,et al.  Extreme lightweight structures: avian feathers and bones , 2017 .

[112]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[113]  A. Sagi,et al.  Calcium phosphate mineralization is widely applied in crustacean mandibles , 2016, Scientific Reports.

[114]  Jürgen Hartmann,et al.  A Spider's Fang: How to Design an Injection Needle Using Chitin‐Based Composite Material , 2012 .

[115]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[116]  M. Horstemeyer,et al.  The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin. , 2011, Acta biomaterialia.

[117]  D J Aneshansley,et al.  Defensive spray of the bombardier beetle: a biological pulse jet. , 1990, Science.

[118]  M. Swain,et al.  Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. , 2008, Journal of the mechanical behavior of biomedical materials.

[119]  Shawn A. Chester,et al.  Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal , 2012, Proceedings of the National Academy of Sciences.

[120]  M. Meyers,et al.  The materials science of collagen. , 2015, Journal of the mechanical behavior of biomedical materials.

[121]  R. Emlet ECHINODERM CALCITE: A MECHANICAL ANALYSIS FROM LARVAL SPICULES , 1982 .

[122]  Markus J. Buehler,et al.  Nonlinear material behaviour of spider silk yields robust webs , 2012, Nature.

[123]  L. Witmer,et al.  Structure of white rhinoceros (Ceratotherium simum) horn investigated by X‐ray computed tomography and histology with implications for growth and external form , 2006, Journal of morphology.

[124]  D. Emlen Costs and the Diversification of Exaggerated Animal Structures , 2001, Science.

[125]  James C. Weaver,et al.  Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .

[126]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[127]  Z. Zhang,et al.  Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales. , 2016, Journal of the mechanical behavior of biomedical materials.

[128]  B J Corrette,et al.  Prey capture in the praying mantis Tenodera aridifolia sinensis: coordination of the capture sequence and strike movements. , 1990, The Journal of experimental biology.

[129]  C. Robinson,et al.  Efficient protein production inspired by how spiders make silk , 2017, Nature Communications.

[130]  Francesco De Carlo,et al.  Self‐Sharpening Mechanism of the Sea Urchin Tooth , 2011 .

[131]  M. Braunwalder,et al.  Fine structure of the stinger (aculeus) in Euscorpius , 2014 .

[132]  James C. Weaver,et al.  Phase Transformations and Structural Developments in the Radular Teeth of Cryptochiton Stelleri , 2013 .

[133]  Julian Vincent,et al.  Structural Biomaterials: Third Edition , 2012 .

[134]  M. Meyers,et al.  The Structure, Functions, and Mechanical Properties of Keratin , 2012, JOM.

[135]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[136]  J. Krebs,et al.  Arms races between and within species , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[137]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[138]  Larry D. Martin,et al.  The Power of the Claw , 2013, PloS one.

[139]  P. Gilbert,et al.  Rate of tooth replacement in the nurse shark, Ginglymostoma cirratum , 1990 .

[140]  M. Horstemeyer,et al.  A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites , 2009 .

[141]  Jae-Young Jung,et al.  Structural analysis of the tongue and hyoid apparatus in a woodpecker. , 2016, Acta biomaterialia.

[142]  J. Vincent,et al.  Mechanical design of hedgehog spines and porcupine quills , 2009 .

[143]  Z. Zhang,et al.  Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation. , 2016, Journal of the mechanical behavior of biomedical materials.

[144]  J. Moradian-Oldak,et al.  The structural biology of the developing dental enamel matrix. , 1999, Journal of structural biology.

[145]  H. W. Lissmann On the Function and Evolution of Electric Organs in Fish , 1958 .

[146]  Steven A Herrera,et al.  Spines of the porcupine fish: Structure, composition, and mechanical properties. , 2017, Journal of the mechanical behavior of biomedical materials.

[147]  M. Buehler,et al.  Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing , 2013 .

[148]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[149]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[150]  M. Horstemeyer,et al.  The geometric effects of a woodpecker’s hyoid apparatus for stress wave mitigation , 2016, Bioinspiration & biomimetics.

[151]  S. Marshall,et al.  The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. , 2007, Biomaterials.

[152]  Robert Langer,et al.  Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients , 2013, Science.

[153]  H. Maldonado,et al.  Hit distance and the predatory strike of the praying mantis , 1967, Zeitschrift für vergleichende Physiologie.

[154]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[155]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[156]  Steven Arcidiacono,et al.  Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells , 2002, Science.

[157]  D. Caldicott,et al.  The anatomy of a shark attack: a case report and review of the literature. , 2001, Injury.

[158]  E Habermann,et al.  Bee and wasp venoms. , 1972, Science.

[159]  Thomas Speck,et al.  Plant Stems: Functional Design and Mechanics , 2011 .

[160]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[161]  Huajian Gao Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[162]  Mason R. Mackey,et al.  Protective role of Arapaima gigas fish scales: structure and mechanical behavior. , 2014, Acta biomaterialia.

[163]  Juha Song,et al.  Threat-protection mechanics of an armored fish. , 2011, Journal of the mechanical behavior of biomedical materials.

[164]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[165]  T. Eisner,et al.  Adhesiveness of Spider Silk , 1964, Science.

[166]  L. Gibson The hierarchical structure and mechanics of plant materials , 2012, Journal of The Royal Society Interface.

[167]  Francois Barthelat,et al.  Structure and mechanics of interfaces in biological materials , 2016 .

[168]  K. Catania The shocking predatory strike of the electric eel , 2014, Science.

[169]  Jae-Young Jung,et al.  A Sinusoidally Architected Helicoidal Biocomposite. , 2016, Advanced materials.

[170]  H. Su,et al.  Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages , 2014, Nature Communications.

[171]  R. Mezzenga,et al.  Magnetic assembly of transparent and conducting graphene-based functional composites , 2016, Nature Communications.

[172]  G. Plaza,et al.  Biomimetic spinning of artificial spider silk from a chimeric minispidroin. , 2017, Nature chemical biology.

[173]  M. Meyers,et al.  Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components. , 2015, Acta biomaterialia.

[174]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[175]  P. Zavattieri,et al.  Shear wave filtering in naturally-occurring Bouligand structures. , 2015, Acta biomaterialia.

[176]  M. Ashby,et al.  The mechanical properties of natural materials. II. Microstructures for mechanical efficiency , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[177]  R. Rice,et al.  Ultrastructural visualization of cross-linked protein features in epidermal appendages. , 1994, Journal of cell science.

[178]  André R. Studart,et al.  Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures , 2013 .

[179]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[180]  André R Studart,et al.  Biologically inspired dynamic material systems. , 2015, Angewandte Chemie.

[181]  H. Wulf,et al.  Structure of water, proteins, and lipids in intact human skin, hair, and nail. , 1998, The Journal of investigative dermatology.

[182]  E. Olevsky,et al.  Energy absorbent natural materials and bioinspired design strategies: A review , 2010 .

[183]  J. McKittrick,et al.  Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). , 2009, Acta biomaterialia.

[184]  Z. Zhang,et al.  Remarkable shape memory effect of a natural biopolymer in aqueous environment. , 2015, Biomaterials.

[185]  Randolph V Lewis,et al.  A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning , 2009, Nature Protocols.

[186]  R O Ritchie,et al.  Mechanistic aspects of the fracture toughness of elk antler bone. , 2010, Acta biomaterialia.

[187]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[188]  S. Mann,et al.  Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. , 2003, Journal of structural biology.

[189]  Peter Fratzl,et al.  Multiscale structural gradients enhance the biomechanical functionality of the spider fang , 2014, Nature Communications.

[190]  A. Waas,et al.  Abiotic tooth enamel , 2017, Nature.

[191]  J. Vincent,et al.  The Specific Location of Zinc in Insect Mandibles , 1982 .

[192]  F Barthelat,et al.  Overcoming the brittleness of glass through bio-inspiration and micro-architecture , 2014, Nature Communications.

[193]  H. Le Ferrand,et al.  Magnetically assisted slip casting of bioinspired heterogeneous composites. , 2015, Nature materials.

[194]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.