A pr 2 00 5 A fully non-linear version of the incompressible Euler equations : the semi-geostrophic system

The semi-geostrophic equations are used in meteorology. They appear as a variant of the two-dimensional Euler incompressible equations in vorticity form, where the Poisson equation that relates the stream function and the vorticity field is just replaced by the fully non linear elliptic Monge-Ampère equation. This work gathers new results concerning the semi-geostrophic equations: Existence and stability of measure valued solutions, existence and uniqueness of solutions under certain continuity conditions for the density, convergence to the incompressible Euler equations.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[3]  Luis A. Caffarelli,et al.  A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity , 1990 .

[4]  G. Loeper Uniqueness of the solution to the Vlasov-Poisson system with bounded density , 2005 .

[5]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[6]  Yann Brenier,et al.  Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..

[7]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[8]  L. Caffarelli Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .

[9]  W. Gangbo,et al.  A Variational Approach for the 2-Dimensional Semi-Geostrophic Shallow Water Equations , 2001 .

[10]  A Geometric approximation to the euler equations: the Vlasov–Monge–Ampère system , 2004, math/0504135.

[11]  On the regularity of the polar factorization for time dependent maps , 2003, math/0306431.

[12]  M. Cullen,et al.  The Fully Compressible Semi-Geostrophic System from Meteorology , 2003 .

[13]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[14]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[15]  M. Cullen,et al.  Properties of the Lagrangian Semigeostrophic Equations , 1989 .

[16]  Jay Kovats DINI-CAMPANATO SPACES AND APPLICATIONS TO NONLINEAR ELLIPTIC EQUATIONS , 1999 .

[17]  Gr'egoire Loeper,et al.  Quasi-Neutral Limit of the Euler–Poisson and Euler–Monge–Ampère Systems , 2005, math/0504134.

[18]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[19]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[20]  Dario Cordero-Erausquin Sur le transport de mesures périodiques , 1999 .