Merkel Cell Polyomavirus: Oncogenesis in a Stable Genome

Merkel cell polyomavirus (MCV) is the causative agent for the majority of Merkel cell carcinoma (MCC) cases. Polyomavirus-associated MCC (MCCP) is characterized by the integration of MCV DNA into the tumor genome and a low tumor mutational burden. In contrast, nonviral MCC (MCCN) is characterized by a high tumor mutational burden induced by UV damage. Since the discovery of MCV, much work in the field has focused on understanding the molecular mechanisms of oncogenesis driven by the MCV tumor (T) antigens. Here, we review our current understanding of how the activities of large T (LT) and small T (ST) promote MCC oncogenesis in the absence of genomic instability. We highlight how both LT and ST inhibit tumor suppressors to evade growth suppression, an important cancer hallmark. We discuss ST interactions with cellular proteins, with an emphasis on those that contribute to sustaining proliferative signaling. Finally, we examine active areas of research into open questions in the field, including the origin of MCC and mechanisms of viral integration.

[1]  A. Udager,et al.  Genomic Evidence Suggests that Cutaneous Neuroendocrine Carcinomas Can Arise from Squamous Dysplastic Precursors , 2021, Modern Pathology.

[2]  F. Aubin,et al.  Merkel cell polyomavirus-negative -Merkel cell carcinoma originating from in situ squamous cell carcinoma: a keratinocytic tumor with neuroendocrine differentiation. , 2021, The Journal of investigative dermatology.

[3]  J. Decaprio Molecular Pathogenesis of Merkel Cell Carcinoma. , 2020, Annual review of pathology.

[4]  J. Homsi,et al.  Merkel Cell Polyomavirus Small T Antigen Activates Noncanonical NF-κB Signaling to Promote Tumorigenesis , 2020, Molecular Cancer Research.

[5]  J. Becker,et al.  High-resolution analysis of Merkel Cell Polyomavirus in Merkel Cell Carcinoma reveals distinct integration patterns and suggests NHEJ and MMBIR as underlying mechanisms , 2020, bioRxiv.

[6]  M. Washburn,et al.  Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis , 2020, Nature Cell Biology.

[7]  H. Kwun,et al.  Merkel Cell Polyomavirus Small Tumor Antigen Activates Matrix Metallopeptidase-9 Gene Expression for Cell Migration and Invasion , 2020, Journal of Virology.

[8]  K. Nakayama,et al.  Recent insight into the role of FBXW7 as a tumor suppressor. , 2020, Seminars in cancer biology.

[9]  A. Gazdar,et al.  SV40 and human mesothelioma , 2020, Translational lung cancer research.

[10]  P. Tamayo,et al.  STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells , 2020, eLife.

[11]  D. Schrama,et al.  Polyomavirus-positive Merkel cell carcinoma derived from a trichoblastoma suggests an epithelial origin of this Merkel cell carcinoma. , 2019, The Journal of investigative dermatology.

[12]  V. Sondak,et al.  The Genomic Landscape of Merkel Cell Carcinoma and Clinicogenomic Biomarkers of Response to Immune Checkpoint Inhibitor Therapy , 2019, Clinical Cancer Research.

[13]  U. Moens,et al.  Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways , 2019, International journal of molecular sciences.

[14]  F. Aubin,et al.  Morphologic and immunophenotypical features distinguishing Merkel cell polyomavirus-positive and negative Merkel cell carcinoma , 2019, Modern Pathology.

[15]  J. Utikal,et al.  Characterization of six Merkel cell polyomavirus‐positive Merkel cell carcinoma cell lines: Integration pattern suggest that large T antigen truncating events occur before or during integration , 2019, International journal of cancer.

[16]  Michael K. Slevin,et al.  Clinical and molecular characterization of virus-positive and virus-negative Merkel cell carcinoma , 2019, bioRxiv.

[17]  B. Clurman,et al.  Merkel cell polyomavirus Tumor antigens expressed in Merkel cell carcinoma function independently of the ubiquitin ligases Fbw7 and β-TrCP , 2019, PLoS pathogens.

[18]  Jingwei Cheng,et al.  Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response , 2018, Proceedings of the National Academy of Sciences.

[19]  S. Doucette,et al.  Immunohistochemical profiles of different subsets of Merkel cell carcinoma. , 2018, Human pathology.

[20]  Youdinghuan Chen,et al.  INSM1 Is More Sensitive and Interpretable than Conventional Immunohistochemical Stains Used to Diagnose Merkel Cell Carcinoma , 2018, The American journal of surgical pathology.

[21]  T. Graeber,et al.  Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage , 2018, Science.

[22]  A. Stang,et al.  Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics , 2017, Journal of the American Academy of Dermatology.

[23]  J. Becker,et al.  Merkel cell carcinoma , 2017, Nature Reviews Disease Primers.

[24]  J. Decaprio Merkel cell polyomavirus and Merkel cell carcinoma , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  Benjamin J. Strober,et al.  Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis , 2017, PLoS pathogens.

[26]  J. Sage,et al.  Are there Multiple Cells of Origin of Merkel Cell Carcinoma? , 2017, Oncogene.

[27]  P. Moore,et al.  Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting , 2017, Oncogene.

[28]  J. Becker,et al.  Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma. , 2017, Critical reviews in oncology/hematology.

[29]  D. Galloway,et al.  Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: A prospective validation study , 2017, Cancer.

[30]  Oliver H. Chang,et al.  Polyomavirus-Negative Merkel Cell Carcinoma: A More Aggressive Subtype Based on Analysis of 282 Cases Using Multimodal Tumor Virus Detection. , 2017, The Journal of investigative dermatology.

[31]  A. Nussenzweig,et al.  Endogenous DNA Damage as a Source of Genomic Instability in Cancer , 2017, Cell.

[32]  Wei Liu,et al.  Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. , 2016, Cell host & microbe.

[33]  S. Haferkamp,et al.  RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells , 2016, Oncotarget.

[34]  T. Chan,et al.  Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy , 2015, Oncotarget.

[35]  F. Jenkins,et al.  Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model , 2015, PloS one.

[36]  Yang Zhang,et al.  I-TASSER server: new development for protein structure and function predictions , 2015, Nucleic Acids Res..

[37]  S. Haferkamp,et al.  Characterization of functional domains in the Merkel cell polyoma virus Large T antigen , 2015, International journal of cancer.

[38]  C. Camacho,et al.  Restricted Protein Phosphatase 2A Targeting by Merkel Cell Polyomavirus Small T Antigen , 2015, Journal of Virology.

[39]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[40]  K. Munger,et al.  Human viral oncogenesis: a cancer hallmarks analysis. , 2014, Cell host & microbe.

[41]  K. Hayashi,et al.  Usefulness of significant morphologic characteristics in distinguishing between Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative Merkel cell carcinomas. , 2013, Human pathology.

[42]  E. Speel,et al.  Early B-cell differentiation in Merkel cell carcinomas: clues to cellular ancestry. , 2013, Cancer research.

[43]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[44]  C. Camacho,et al.  Merkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFbw7. , 2013, Cell host & microbe.

[45]  S. Batra,et al.  Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. , 2013, Cancer letters.

[46]  O. Rozenblatt-Rosen,et al.  Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities , 2013, Journal of Virology.

[47]  R. Kolhe,et al.  Immunohistochemical expression of PAX5 and TdT by Merkel cell carcinoma and pulmonary small cell carcinoma: a potential diagnostic pitfall but useful discriminatory marker. , 2013, International journal of clinical and experimental pathology.

[48]  P. Lambert,et al.  Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. , 2013, Virology.

[49]  I. Moll,et al.  Which Are the Cells of Origin in Merkel Cell Carcinoma? , 2012, Journal of skin cancer.

[50]  L. Misery,et al.  Presence of putative stem cells in Merkel cell carcinomas , 2012, Journal of the European Academy of Dermatology and Venereology : JEADV.

[51]  J. Ring,et al.  Histological, Immunohistological, and Clinical Features of Merkel Cell Carcinoma in Correlation to Merkel Cell Polyomavirus Status , 2012, Journal of skin cancer.

[52]  Johannes P. W. Grimm,et al.  An intact retinoblastoma protein‐binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells , 2012, International journal of cancer.

[53]  J. Colle,et al.  PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1. , 2011, Biochimica et biophysica acta.

[54]  C. Alkan,et al.  Identification and validation of a novel mature microRNA encoded by the Merkel cell polyomavirus in human Merkel cell carcinomas. , 2011, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[55]  Yuan Chang,et al.  Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. , 2011, The Journal of clinical investigation.

[56]  M. Herlyn,et al.  Dermis‐derived stem cells: a source of epidermal melanocytes and melanoma? , 2011, Pigment cell & melanoma research.

[57]  L. Sommer Generation of melanocytes from neural crest cells , 2011, Pigment cell & melanoma research.

[58]  W. Hanna,et al.  Expression of TdT in Merkel cell carcinoma and small cell lung carcinoma. , 2011, American journal of clinical pathology.

[59]  A. Murdoch,et al.  Human Epidermal Neural Crest Stem Cells (hEPI-NCSC)—Characterization and Directed Differentiation into Osteocytes and Melanocytes , 2011, Stem Cell Reviews and Reports.

[60]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[61]  Seung-Hyun Woo,et al.  Identification of epidermal progenitors for the Merkel cell lineage , 2010, Development.

[62]  Yuan Chang,et al.  Merkel Cell Polyomavirus-Infected Merkel Cell Carcinoma Cells Require Expression of Viral T Antigens , 2010, Journal of Virology.

[63]  B. Smoller,et al.  New Insights Into Merkel Cell Carcinoma , 2010, Advances in anatomic pathology.

[64]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[65]  E. Velazquez,et al.  Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. , 2010, The American journal of pathology.

[66]  E. Lumpkin,et al.  Mammalian Merkel cells are descended from the epidermal lineage. , 2009, Developmental biology.

[67]  Bassem A. Hassan,et al.  Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis , 2009, The Journal of cell biology.

[68]  J. Becker,et al.  Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus , 2009, PLoS pathogens.

[69]  J. Brandner,et al.  Evidence for distinct populations of human Merkel cells , 2009, Histochemistry and Cell Biology.

[70]  R. Garcea,et al.  Seroepidemiology of Human Polyomaviruses , 2009, PLoS pathogens.

[71]  G. Seo,et al.  Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. , 2009, Virology.

[72]  J. Forteza,et al.  Merkel cell carcinoma associated with in situ and invasive squamous cell carcinoma. , 2008, Acta dermato-venereologica.

[73]  Yuan Chang,et al.  T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus , 2008, Proceedings of the National Academy of Sciences.

[74]  Rodney T. Miller,et al.  Reactivity with TdT in Merkel cell carcinoma: a potential diagnostic pitfall. , 2008, American journal of clinical pathology.

[75]  P. Moore,et al.  Clonal Integration of a Polyomavirus in Human Merkel Cell Carcinoma , 2008, Science.

[76]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[77]  C. Ross,et al.  TdT expression in Merkel cell carcinoma: potential diagnostic pitfall with blastic hematological malignancies and expanded immunohistochemical analysis , 2007, Modern Pathology.

[78]  A. Giordano,et al.  RB and cell cycle progression , 2006, Oncogene.

[79]  G. Sauter,et al.  Pax-5 immunoexpression in various types of benign and malignant tumours: a high-throughput tissue microarray analysis , 2006, Journal of Clinical Pathology.

[80]  J. Pipas,et al.  SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation , 2005, Oncogene.

[81]  C. Varas,et al.  Merkel cell carcinoma: a clinicopathological study of 11 cases , 2005, Journal of the European Academy of Dermatology and Venereology : JEADV.

[82]  J. M. Martín,et al.  Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers , 2005, Histopathology.

[83]  Wei Liu,et al.  B-Cell Specific Activation Protein Encoded by the PAX-5 Gene Is Commonly Expressed in Merkel Cell Carcinoma and Small Cell Carcinomas , 2005, The American journal of surgical pathology.

[84]  D. Cobrinik Pocket proteins and cell cycle control , 2005, Oncogene.

[85]  R. Moll,et al.  Human Merkel cells--aspects of cell biology, distribution and functions. , 2005, European journal of cell biology.

[86]  R. Agami,et al.  The tumor-suppressive functions of the human INK4A locus. , 2003, Cancer cell.

[87]  K. Nabeshima,et al.  CD56: a useful marker for diagnosing Merkel cell carcinoma. , 2003, Journal of dermatological science.

[88]  Robert A. Weinberg,et al.  Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation , 2002, Molecular and Cellular Biology.

[89]  J. Pipas,et al.  ATP-Dependent Simian Virus 40 T-Antigen–Hsc70 Complex Formation , 2001, Journal of Virology.

[90]  J. Pipas,et al.  The Molecular Chaperone Activity of Simian Virus 40 Large T Antigen Is Required To Disrupt Rb-E2F Family Complexes by an ATP-Dependent Mechanism , 2000, Molecular and Cellular Biology.

[91]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[92]  Robert A. Weinberg,et al.  Creation of human tumour cells with defined genetic elements , 1999, Nature.

[93]  J. Decaprio,et al.  The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function , 1997, Journal of virology.

[94]  J. Decaprio,et al.  Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen , 1997, Molecular and cellular biology.

[95]  I. M. Marks,et al.  The amino-terminal transforming region of simian virus 40 large T and small t antigens functions as a J domain , 1997, Molecular and cellular biology.

[96]  R. Moll,et al.  Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuronal proteins are absent. , 1995, The Journal of investigative dermatology.

[97]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[98]  R. Moll,et al.  Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. , 1992, The American journal of pathology.

[99]  A. Pardee G1 events and regulation of cell proliferation. , 1989, Science.

[100]  D. Visscher,et al.  Cutaneous neuroendocrine (Merkel cell) carcinoma: an immunophenotypic, clinicopathologic, and flow cytometric study. , 1989, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[101]  Stephen H. Friend,et al.  A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma , 1986, Nature.

[102]  L. Cantley,et al.  Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation , 1985, Nature.

[103]  G. Bosl,et al.  Neuroendocrine (Merkel cell) carcinoma of the skin: A histologic and ultrastructural study of two cases , 1980, The American journal of surgical pathology.

[104]  A. Levine,et al.  Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells , 1979, Cell.

[105]  D. Lane,et al.  T antigen is bound to a host protein in SY40-transformed cells , 1979, Nature.

[106]  C. Toker,et al.  Trabecular carcinoma of the skin. An ultrastructural study , 1978, Cancer.

[107]  A. Pardee,et al.  A restriction point for control of normal animal cell proliferation. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Yousef Ahmed Fouad,et al.  Revisiting the hallmarks of cancer. , 2017, American journal of cancer research.

[109]  Samira M. Azarin,et al.  Human embryonic stem cell-derived keratinocytes exhibit an epidermal transcription program and undergo epithelial morphogenesis in engineered tissue constructs. , 2010, Tissue engineering. Part A.

[110]  D. Larouche,et al.  Identification of epithelial stem cells in vivo and in vitro using keratin 19 and BrdU. , 2010, Methods in molecular biology.

[111]  J. Forteza,et al.  Neural cell adhesion molecule immunoreactivity in Merkel cells and Merkel cell tumours , 2004, Virchows Archiv.

[112]  R. Manne,et al.  Neurofilament immunoreactivity in Merkel-cell tumors: a differentiating feature from small-cell carcinoma. , 1993, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[113]  J. Forteza,et al.  Synaptophysinlike immunoreactivity in the Merkel cells of pig-snout skin. , 1989, Ultrastructural pathology.

[114]  C. Toker Trabecular carcinoma of the skin. , 1972, Archives of dermatology.