High-speed heterojunction photodiodes made of single- or multiple-layer MoS2 directly-grown on Si quantum dots

[1]  S. Choi,et al.  High-detectivity and -stability multilayer-graphene/Si-quantum-dot photodetectors with TiOx back-surface passivation layer , 2019, Dyes and Pigments.

[2]  Zhinong Yu,et al.  Solution Processed Trilayer Structure for High-Performance Perovskite Photodetector , 2018, Nanoscale Research Letters.

[3]  Minxuan Xu,et al.  High Response, Self-Powered Photodetector Based on the Monolayer MoS2/P-Si Heterojunction with Asymmetric Electrodes. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[4]  Jong Min Kim,et al.  Self-powered Ag-nanowires-doped graphene/Si quantum dots/Si heterojunction photodetectors , 2018 .

[5]  Tingting Xu,et al.  Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction , 2018, Solar Energy Materials and Solar Cells.

[6]  S. Choi,et al.  High-Performance Conducting Polymer/Si Nanowires Hybrid Solar Cells Using Multilayer-Graphene Transparent Conductive Electrode and Back Surface Passivation Layer , 2018, ACS Sustainable Chemistry & Engineering.

[7]  Caofeng Pan,et al.  A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector , 2018 .

[8]  Tingting Xu,et al.  High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction , 2018 .

[9]  Sang Woo Seo,et al.  Enhancement of efficiency and long-term stability in graphene/Si-quantum-dot heterojunction photodetectors by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene , 2017 .

[10]  Wei Hu,et al.  Two-dimensional van der Waals heterojunctions for functional materials and devices , 2017 .

[11]  Cunlong Li,et al.  Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films , 2017 .

[12]  B. Cho,et al.  High-performing MoS2-embedded Si photodetector , 2017 .

[13]  Samaresh Das,et al.  High performance broadband photodetector based on MoS2/porous silicon heterojunction , 2017 .

[14]  S. Choi Graphene-based vertical-junction diodes and applications , 2017 .

[15]  Chao Xie,et al.  Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene , 2017 .

[16]  Samaresh Das,et al.  High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors , 2017, Scientific Reports.

[17]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[18]  Rishi Maiti,et al.  Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices , 2016, Scientific Reports.

[19]  Yan Zhang,et al.  In Situ Fabrication of Vertical Multilayered MoS2/Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. , 2016, Small.

[20]  Tingting Yang,et al.  High Detectivity Graphene-Silicon Heterojunction Photodetector. , 2016, Small.

[21]  Jiansheng Jie,et al.  MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High‐Detectivity, Self‐Driven Visible–Near Infrared Photodetectors , 2015 .

[22]  Gao Wei,et al.  High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. , 2015, Nanoscale.

[23]  Chang Oh Kim,et al.  Graphene/Si‐Quantum‐Dot Heterojunction Diodes Showing High Photosensitivity Compatible with Quantum Confinement Effect , 2015, Advanced materials.

[24]  Yang Li,et al.  Photodiode-Like Behavior and Excellent Photoresponse of Vertical Si/Monolayer MoS2 Heterostructures , 2014, Scientific Reports.

[25]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[26]  Dong Hee Shin,et al.  Near-ultraviolet-sensitive graphene/porous silicon photodetectors. , 2014, ACS applied materials & interfaces.

[27]  Qing Hua Wang,et al.  Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. , 2014, ACS nano.

[28]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.

[29]  A. Radenović,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[30]  S. Salahuddin,et al.  High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector , 2013, Scientific Reports.

[31]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[32]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[33]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[34]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[35]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[36]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[37]  R. Penner,et al.  20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires. , 2010, Nano letters.

[38]  Dong Hee Shin,et al.  Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes , 2018 .