Online decentralized parameter estimation of structural systems using asynchronous data

Abstract This paper presents an online decentralized parameter estimation approach for structural systems using asynchronous data. This is motivated by the problems encountered in practice where data asynchronism from wireless sensor networks is inevitable. The proposed method performs first online decentralized parameter estimation at each sensor node. Then, only the condensed local model parameter estimation results are transmitted to the base station for fusion in order to obtain reliable global estimations. The proposed approach utilizes the fact that local model parameter estimation is insensitive to asynchronism of different sensor nodes because the local parameter estimation uses only data from its own node. Furthermore, the locally updated model parameters to be fused at the base station are insensitive to asynchronism. The proposed approach provides a simple but reliable framework for online parameter estimation of structural systems using asynchronous data directly. Furthermore, the proposed method requires neither a model of asynchronism nor estimation of the time shifts among different sensor nodes. Finally, examples using truss and bridge models are utilized to demonstrate the proposed framework. Comparison with conventional centralized identification results is also presented.

[1]  Siu-Kui Au,et al.  Fast Bayesian approach for modal identification using free vibration data, Part i - Most probable value , 2016 .

[2]  María Jesús López Boada,et al.  A robust observer based on H∞ filtering with parameter uncertainties combined with Neural Networks for estimation of vehicle roll angle , 2018 .

[3]  Shenfang Yuan,et al.  On-line prognosis of fatigue cracking via a regularized particle filter and guided wave monitoring , 2019, Mechanical Systems and Signal Processing.

[4]  Satish Nagarajaiah,et al.  A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems , 2019, Mechanical Systems and Signal Processing.

[5]  J. Beck,et al.  Entropy-Based Optimal Sensor Location for Structural Model Updating , 2000 .

[6]  J. Beck,et al.  Model Selection using Response Measurements: Bayesian Probabilistic Approach , 2004 .

[7]  Laurent Mevel,et al.  Seismic-induced damage detection through parallel force and parameter estimation using an improved interacting Particle-Kalman filter , 2018, Mechanical Systems and Signal Processing.

[8]  Ka-Veng Yuen,et al.  Online updating and uncertainty quantification using nonstationary output-only measurement , 2016 .

[9]  C. Papadimitriou,et al.  A dual Kalman filter approach for state estimation via output-only acceleration measurements , 2015 .

[10]  Ting-Hua Yi,et al.  Innovative structural health monitoring technologies , 2016 .

[11]  Hongping Zhu,et al.  Dynamic reduction-based structural damage detection of transmission tower utilizing ambient vibration data , 2009 .

[12]  Harold W. Sorenson,et al.  Recursive fading memory filtering , 1971, Inf. Sci..

[13]  Michael Theiler,et al.  On‐board data synchronization in wireless structural health monitoring systems based on phase locking , 2018, Structural Control and Health Monitoring.

[14]  W. Desmet,et al.  An online coupled state/input/parameter estimation approach for structural dynamics , 2015 .

[15]  Wang-Ji Yan,et al.  A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part II: Mode shape assembly and case studies , 2015 .

[16]  Billie F. Spencer,et al.  Risk monitoring of buildings with wireless sensor networks , 2005 .

[17]  Ka-Veng Yuen,et al.  Novel Outlier-Resistant Extended Kalman Filter for Robust Online Structural Identification , 2015 .

[18]  Oral Büyüköztürk,et al.  Probabilistic updating of building models using incomplete modal data , 2016 .

[19]  Raimondo Betti,et al.  A Hybrid Optimization Algorithm with Bayesian Inference for Probabilistic Model Updating , 2015, Comput. Aided Civ. Infrastructure Eng..

[20]  Jiuchao Feng,et al.  Real-time nonlinear structural system identification via iterated unscented Kalman filter , 2012 .

[21]  L. Katafygiotis,et al.  A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I: Posterior most probable value and uncertainty , 2015 .

[22]  Siu-Kui Au,et al.  Bayesian operational modal analysis with asynchronous data, part I: Most probable value , 2018 .

[23]  Ka-Veng Yuen,et al.  Real‐time substructural identification by boundary force modeling , 2018 .

[24]  Hongnan Li,et al.  Wireless sensor placement for structural monitoring using information-fusing firefly algorithm , 2017 .

[25]  Jerome P. Lynch,et al.  Algorithms for time synchronization of wireless structural monitoring sensors , 2005 .

[26]  Huan Zhou,et al.  A Computationally Efficient Algorithm for Real‐Time Tracking the Abrupt Stiffness Degradations of Structural Elements , 2016, Comput. Aided Civ. Infrastructure Eng..

[27]  Gyula Simon,et al.  The flooding time synchronization protocol , 2004, SenSys '04.

[28]  Costas Papadimitriou,et al.  Hierarchical Bayesian model updating for structural identification , 2015 .

[29]  Ka-Veng Yuen,et al.  Real‐Time System Identification: An Algorithm for Simultaneous Model Class Selection and Parametric Identification , 2015, Comput. Aided Civ. Infrastructure Eng..

[30]  Mahendra P. Singh,et al.  An adaptive unscented Kalman filter for tracking sudden stiffness changes , 2014 .

[31]  Siu-Kui Au,et al.  Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty , 2018 .

[32]  Tao Yin,et al.  Dynamic Analysis of Finite-Length Circular Cylindrical Shells with a Circumferential Surface Crack , 2013 .

[33]  K. Yuen Bayesian Methods for Structural Dynamics and Civil Engineering , 2010 .

[34]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[35]  Jr B. F. Spencer,et al.  Structural Health Monitoring Using Smart Sensors , 2007 .

[36]  Geert Lombaert,et al.  Offline synchronization of data acquisition systems using system identification , 2016 .

[37]  Billie F. Spencer,et al.  Efficient time synchronization for structural health monitoring using wireless smart sensor networks , 2016 .