Nonmetallic crystals with high thermal conductivity

Abstract Nonmetallic crystals transport heat primarily by phonons at room temperature and below. There are only a few nonmetallic crystals which can be classed as high thermal conductivity solids, in the sense of having a thermal conductivity of > 1 W/cmK at 300K. Thermal conductivity measurements on natural and synthetic diamond, cubic BN, BP and AIN confirm that all of them are high thermal conductivity solids. Studies have been made of the effect on the thermal conductivity of nitrogen impurities in diamond, and oxygen impurities in AIN. The nitrogen impurities scatter phonons mostly from the strain field, the oxygen impurities scatter phonons mostly from the mass defects caused by aluminum vacancies. Pure A1N as well as pure SiC, BeO, BP and BeS conduct heat almost as well as does copper at room temperature, while pure natural and synthetic diamonds conduct heat five times better than copper. All of the nonmetallic solids that are known to possess high thermal conductivity have either the diamond-like, boron carbide, or graphite crystal structure. There are twelve different diamond-like crystals, a few boron carbide-type crystals, and two graphite structure crystals that have high thermal conductivity. Analyses of the rock-salt, fluorite, quartz, corundum and other structures show no candidates for this class. The four rules for finding crystals with high thermal conductivity are that the crystal should have (1) low atomic mass, (2) strong bonding, (3) simple crystal structure, and (4) low anharmonicity. The prime example of such a solid is diamond, which has the highest known thermal conductivity at 300K.

[1]  R. H. Wentorf Synthesis of the Cubic Form of Boron Nitride , 1961 .

[2]  J. A. Morrison,et al.  ON THE SPECIFIC HEAT OF SOLIDS AT LOW TEMPERATURES , 1957 .

[3]  J. T. Lewis,et al.  Elastic Constants of the Alkali Halides at 4.2°K , 1967 .

[4]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[5]  F. Donahoe Book reviewThermodynamic and transport properties of gases, liquids and solids: sponsored by ASME. 472 pages, diagrams, 812 × 11 in. New York, McGraw-Hill Book Co., Inc., 1959.Price, $12.50 , 1960 .

[6]  Carl L. Julian,et al.  Theory of Heat Conduction in Rare-Gas Crystals , 1965 .

[7]  G. Berthold Zur Ultrarotdurchlässigkeit von BeO, BeS, MgO, MgS und Li2O , 1964 .

[8]  W. L. Bond,et al.  Nitrogen, a major impurity in common type I diamond , 1959 .

[9]  G. A. Slack,et al.  Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond , 1964 .

[10]  G. Wolff,et al.  Luminescence in the System Al2 O 3 ‐ AIN , 1962 .

[11]  H. Jackson,et al.  Thermal Conductivity, Second Sound, and Phonon-Phonon Interactions in NaF , 1971 .

[12]  J. A. Morrison,et al.  The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra , 1959 .

[13]  H. Weiss Thermospannung und Wärmeleitung von III—V‐Verbindungen und ihren Mischkristallen , 1959 .

[14]  G. A. Slack,et al.  THERMAL CONDUCTIVITY OF BORON AND SOME BORON COMPOUNDS. , 1971 .

[15]  G. A. Jeffrey,et al.  Study of the Wurtzite‐Type Compounds. V. Structure of Aluminum Oxycarbide, Al2CO; A Short‐Range Wurtzite‐Type Superstructure , 1961 .

[16]  G. A. Jeffrey,et al.  The structure of the aluminum carbonitrides. II , 1966 .

[17]  G. A. Jeffrey,et al.  Study of the Wurtzite‐Type Binary Compounds. I. Structures of Aluminum Nitride and Beryllium Oxide , 1956 .

[18]  C. Drum Axial Imperfections in Filamentary Crystals of Aluminum Nitride. I , 1965 .

[19]  M. Perez,et al.  Recherches sur les oxynitrures metalliques , 1967 .

[20]  G. A. Slack,et al.  Thermal Conductivity of BeO Single Crystals , 1971 .

[21]  D. L. Burn,et al.  Atomic Heat of Diamond from 11° to 200°K , 1958 .

[22]  G. A. Jeffrey,et al.  The structure of aluminum tetroxycarbide , 1963 .

[23]  G. Schodder,et al.  Some Elastic Constants of Silicon Carbide , 1965 .

[24]  P. Thacher Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF , 1967 .

[25]  G. A. Slack,et al.  Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .

[26]  S. Haussühl,et al.  Elastische und thermoelastische Eigenschaften von LiH- und LiD-Einkristallen , 1969 .

[27]  R. Berman,et al.  Physical properties of diamond , 1965 .

[28]  V. Peletskii,et al.  Thermal conductivity of self-bonded silicon carbide , 1969 .

[29]  H. B. Dyer,et al.  Optical absorption features associated with paramagnetic nitrogen in diamond , 1965 .

[30]  E. F. Steigmeier,et al.  Acoustical-Optical Phonon Scattering in Ge, Si, and III-V Compounds , 1966 .

[31]  L. M. Foster,et al.  Aluminum Nitride, a Refractory for Aluminum to 2000°C. , 1959 .

[32]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[33]  E. F. Steigmeier THE DEBYE TEMPERATURES OF III‐V COMPOUNDS , 1963 .

[34]  H. Ott Das Gitter des Aluminiumnitrids (AlN) , 1924 .

[35]  W. Scales Specific Heat of LiF and KI at Low Temperatures , 1958 .

[36]  F. Simon,et al.  Thermal Conductivity of Dielectric Crystals: The ‘Umklapp’ Process , 1951, Nature.

[37]  G. A. Slack,et al.  Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .

[38]  D. Spitzer Lattice thermal conductivity of semiconductors: A chemical bond approach , 1969 .

[39]  W. O. Groves,et al.  The Elastic Constants of Gallium Phosphide , 1968 .

[40]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[41]  G. Verma,et al.  Lattice Thermal Conductivity at Low Temperatures , 1962 .

[42]  P. P. Sorokin,et al.  Electron-Spin Resonance of Nitrogen Donors in Diamond , 1959 .

[43]  R. Berman,et al.  The Graphite–Diamond Equilibrium , 1955, Nature.

[44]  R. W. Roberts Ultrasonic parameters in the born model of the sodium and potassium halides , 1969 .

[45]  H. M. Strong,et al.  Diamond growth rates and physical properties of laboratory-made diamond , 1971 .

[46]  K. M. Taylor,et al.  Some Properties of Aluminum Nitride , 1960 .