Data-driven and model-based design

This paper explores novel research directions arising from the revolutions in artificial intelligence and the related fields of machine learning, data science, etc. We identify opportunities for system design to leverage the advances in these disciplines, as well as to identify and study new problems. Specifically, we propose Data-driven and Model-based Design (DMD) as a new system design paradigm, which combines model-based design with classic and novel techniques to learn models from data.

[1]  Sumit Gulwani,et al.  Program Synthesis , 2017, Software Systems Safety.

[2]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[3]  Stavros Tripakis,et al.  Learning Moore machines from input–output traces , 2016, International Journal on Software Tools for Technology Transfer.

[4]  Sanjit A. Seshia Sciduction: Combining induction, deduction, and structure for verification and synthesis , 2012, DAC Design Automation Conference 2012.

[5]  Igor Buzhinsky,et al.  Exact finite-state machine identification from scenarios and temporal properties , 2016, International Journal on Software Tools for Technology Transfer.

[6]  Stavros Tripakis,et al.  Semantics-preserving multitask implementation of synchronous programs , 2008, TECS.

[7]  Ufuk Topcu,et al.  Learning from Demonstrations with High-Level Side Information , 2017, IJCAI.

[8]  Bengt Jonsson,et al.  Learning of Automata Models Extended with Data , 2011, SFM.

[9]  John G. Thistle,et al.  Undecidability in decentralized supervision , 2005, Syst. Control. Lett..

[10]  Edsger W. Dijkstra,et al.  The humble programmer , 1972, CACM.

[11]  Rajeev Alur,et al.  Automatic Synthesis of Distributed Protocols , 2017, SIGA.

[12]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[13]  Xue Liu,et al.  Optimizing the implementation of real-time Simulink models onto distributed automotive architectures , 2013, J. Syst. Archit..

[14]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[15]  J. Taylor,et al.  Switching and finite automata theory, 2nd ed. , 1980, Proceedings of the IEEE.

[16]  Edward A. Lee,et al.  Industrial Cyber-Physical Systems - iCyPhy , 2013, CSDM.

[17]  Giorgio Buttazzo,et al.  Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications , 1997 .

[18]  Alberto L. Sangiovanni-Vincentelli,et al.  Implementing Synchronous Models on Loosely Time Triggered Architectures , 2008, IEEE Transactions on Computers.

[19]  Sandeep K. S. Gupta,et al.  Special Issue on Cyber-Physical Systems [Scanning the Issue] , 2012, Proc. IEEE.

[20]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[21]  Bengt Jonsson,et al.  Inferring Canonical Register Automata , 2012, VMCAI.

[22]  Zohar Manna,et al.  A Deductive Approach to Program Synthesis , 1979, TOPL.

[23]  Niraj K. Jha,et al.  Switching and Finite Automata Theory: Frontmatter , 2009 .

[24]  Min Wu,et al.  Safety Verification of Deep Neural Networks , 2016, CAV.

[25]  K. Keutzer,et al.  System-level design: orthogonalization of concerns andplatform-based design , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  Amir Pnueli,et al.  Distributed reactive systems are hard to synthesize , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[27]  Roland Groz,et al.  Inferring Mealy Machines , 2009, FM.

[28]  Armando Solar-Lezama,et al.  Program synthesis by sketching , 2008 .

[29]  Andreas Krause,et al.  Predicting Program Properties from "Big Code" , 2015, POPL.

[30]  Thomas A Henzinger,et al.  Two challenges in embedded systems design: predictability and robustness , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Rajeev Alur,et al.  Automatic Completion of Distributed Protocols with Symmetry , 2015, CAV.

[32]  Alberto L. Sangiovanni-Vincentelli,et al.  Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design , 2007, Proceedings of the IEEE.

[33]  Rajeev Alur,et al.  Synthesizing Finite-State Protocols from Scenarios and Requirements , 2014, Haifa Verification Conference.

[34]  Domagoj Babic,et al.  Sigma*: symbolic learning of input-output specifications , 2013, POPL.

[35]  Gabor Karsai,et al.  Toward a Science of Cyber–Physical System Integration , 2012, Proceedings of the IEEE.

[36]  Bernd Finkbeiner,et al.  Synthesis of Reactive Systems , 2016, Dependable Software Systems Engineering.

[37]  Nidhi Kalra,et al.  Driving to Safety , 2016 .

[38]  Christel Baier,et al.  Principles of model checking , 2008 .

[39]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems - A Symbolic Approach , 2009 .

[40]  Rajeev Alur,et al.  Principles of Cyber-Physical Systems , 2015 .

[41]  Mykel J. Kochenderfer,et al.  Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks , 2017, CAV.

[42]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[43]  Stéphane Lafortune,et al.  Supervisory control and reactive synthesis: a comparative introduction , 2017, Discret. Event Dyn. Syst..

[44]  Luca Pulina,et al.  An Abstraction-Refinement Approach to Verification of Artificial Neural Networks , 2010, CAV.

[45]  Christof Löding,et al.  ICE: A Robust Framework for Learning Invariants , 2014, CAV.

[46]  Bengt Jonsson,et al.  Learning Extended Finite State Machines , 2014, SEFM.

[47]  Thomas A. Henzinger,et al.  The Discipline of Embedded Systems Design , 2007, Computer.

[48]  Colin de la Higuera,et al.  Grammatical Inference: Learning Automata and Grammars , 2010 .

[49]  Mihalis Yannakakis,et al.  Testing, optimization, and games , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[50]  Joseph Sifakis,et al.  Building models of real-time systems from application software , 2003, Proc. IEEE.

[51]  David L. Dill,et al.  Developing Bug-Free Machine Learning Systems With Formal Mathematics , 2017, ICML.

[52]  Marco Spuri,et al.  Deadline Scheduling for Real-Time Systems: Edf and Related Algorithms , 2013 .

[53]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[54]  Petru Eles,et al.  Time-Predictable Embedded Software on Multi-Core Platforms: Analysis and Optimization , 2014, Found. Trends Electron. Des. Autom..

[55]  Calin Belta,et al.  Formal Synthesis of Cyber-Physical Systems (Dagstuhl Seminar 17201) , 2017, Dagstuhl Reports.

[56]  Gabor Karsai,et al.  Model-Integrated Computing , 1997, Computer.

[57]  Richard M. Murray,et al.  Learning-Based Abstractions for Nonlinear Constraint Solving , 2017, IJCAI.

[58]  Mark Klein,et al.  A practitioner's handbook for real-time analysis - guide to rate monotonic analysis for real-time systems , 1993, The Kluwer international series in engineering and computer science.

[59]  Viktor Kuncak,et al.  Synthesizing Java expressions from free-form queries , 2015, OOPSLA.

[60]  James R. Larus,et al.  Mining specifications , 2002, POPL '02.

[61]  Stavros Tripakis Undecidable problems of decentralized observation and control on regular languages , 2004, Inf. Process. Lett..

[62]  D. Sculley,et al.  Hidden Technical Debt in Machine Learning Systems , 2015, NIPS.

[63]  Frits W. Vaandrager,et al.  Model learning , 2017, Commun. ACM.

[64]  Thomas A. Henzinger,et al.  From control models to real-time code using Giotto , 2003 .

[65]  Stavros Tripakis,et al.  From simulink to SCADE/lustre to TTA: a layered approach for distributed embedded applications , 2003 .

[66]  Loris D'Antoni,et al.  Learning Symbolic Automata , 2017, TACAS.

[67]  Alexander Aiken,et al.  Verification as Learning Geometric Concepts , 2013, SAS.

[68]  David Lee,et al.  Principles and methods of testing finite state machines-a survey , 1996, Proc. IEEE.

[69]  W. M. Wonham,et al.  The control of discrete event systems , 1989 .

[70]  Stavros Tripakis,et al.  Compositionality in the Science of System Design , 2016, Proceedings of the IEEE.