Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation

We consider a derivative nonlinear Schrödinger equation with a general nonlinearity. This equation has a two-parameter family of solitary wave solutions. We prove orbital stability/instability results that depend on the strength of the nonlinearity and, in some instances, on the velocity. We illustrate these results with numerical simulations.

[1]  H. Tawara,et al.  Systematic study of charge-state and energy dependences of transfer-ionization to single-electron-capture ratios for Fq+ ions incident on He , 2007 .

[2]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[3]  Masahito Ohta,et al.  Stability of solitary waves for derivative nonlinear Schrödinger equation , 2006 .

[4]  Dmitry E. Pelinovsky,et al.  Purely nonlinear instability of standing waves with minimal energy , 2003 .

[5]  E. Mjølhus,et al.  On the modulational instability of hydromagnetic waves parallel to the magnetic field , 1976, Journal of Plasma Physics.

[6]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[7]  B. Guo,et al.  Orbital Stability of Solitary Waves for the Nonlinear Derivative Schrödinger Equation , 1995 .

[8]  B. Malomed,et al.  Self-steepening of ultrashort optical pulses without self-phase-modulation , 2007 .

[9]  Axel Grünrock,et al.  Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data , 2007, SIAM J. Math. Anal..

[10]  Dmitry Pelinovsky,et al.  Nonlinear Instability of a Critical Traveling Wave in the Generalized Korteweg-de Vries Equation , 2007, SIAM J. Math. Anal..

[11]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[12]  Nakao Hayashi,et al.  On the derivative nonlinear Schro¨dinger equation , 1992 .

[13]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[14]  Nakao Hayashi,et al.  Finite energy solutions of nonlinear Schrdinger equations of derivative type , 1994 .

[15]  Sulem,et al.  Multidimensional modulation of Alfvén waves. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Nakao Hayashi,et al.  The initial value problem for the derivative nonlinear Schrödinger equation in the energy space , 1993 .

[17]  Nakao Hayashi,et al.  Remarks on nonlinear Schrödinger equations in one space dimension , 1994, Differential and Integral Equations.

[18]  Jaime Angulo Pava,et al.  Nonlinear Dispersive Equations , 2009 .

[19]  Tohru Ozawa,et al.  On the nonlinear Schrdinger equations of derivative type , 1995 .

[20]  P. Miller,et al.  The semiclassical modified nonlinear Schrodinger equation I: Modulation theory and spectral analysis , 2007, nlin/0702028.

[21]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[22]  Masahito Ohta,et al.  Instability of bound states for abstract nonlinear Schr , 2010, 1010.1511.

[23]  Gideon Simpson,et al.  Focusing Singularity in a Derivative Nonlinear Schr\"odinger Equation , 2013, 1301.1048.

[24]  Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS , 2005, math/0505457.

[25]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[26]  Luis Vega,et al.  Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .

[27]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[28]  Jaime Angulo Pava,et al.  Solitary and periodic travelling wave solutions , 2009 .

[29]  Susumu Takeda,et al.  Modified Nonlinear Schrödinger Equation for Alfvén Waves Propagating along the Magnetic Field in Cold Plasmas , 1975 .

[30]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[31]  Chengchun Hao Well-posedness for one-dimensional derivative nonlinear Schr\ , 2007, 0811.4222.

[32]  L. Zhang,et al.  On a Weak Solution of the Mixed Nonlinear Schrödinger Equations , 1994 .

[33]  Felipe Linares,et al.  Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations , 2001 .

[34]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[35]  Jyh-Hao Lee Global solvability of the derivative nonlinear Schrödinger equation , 1989 .

[36]  Jeremy Louis Marzuola,et al.  A System of ODEs for a Perturbation of a Minimal Mass Soliton , 2009, J. Nonlinear Sci..

[37]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[38]  Terence Tao,et al.  A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..