Simulating flaring events in complex active regions driven by observed magnetograms
暂无分享,去创建一个
M. Dimitropoulou | H. Isliker | M. Georgoulis | L. Vlahos | M. K. Georgoulis | M. Dimitropoulou | H. Isliker | L. Vlahos
[1] S. Kane,et al. Solar hard x-ray microflares , 1984 .
[2] Loukas Vlahos,et al. On the Self-Similarity of Unstable Magnetic Discontinuities in Solar Active Regions , 2004 .
[3] Loukas Vlahos,et al. Coronal Heating by Nanoflares and the Variability of the Occurrence Frequency in Solar Flares , 1996 .
[4] Caltech,et al. Nonlinear Dynamics of the Parker Scenario for Coronal Heating , 2007, 0709.3687.
[5] Brian R. Dennis,et al. Solar hard X-ray bursts , 1985 .
[6] N. Vilmer. Hard X-ray emission processes in solar flares , 1987 .
[7] Brian R. Dennis,et al. Frequency distributions and correlations of solar X-ray flare parameters , 1993 .
[8] James M. McTiernan,et al. Solar flares and avalanches in driven dissipative systems , 1993 .
[9] E. Parker. Solar and stellar magnetic fields and atmospheric structures: Theory , 1989 .
[10] E. Noonan,et al. Self-organized Criticality from Separator Reconnection in Solar Flares , 2000 .
[11] Preprocessing of Vector Magnetograph Data for a Nonlinear Force-Free Magnetic Field Reconstruction , 2006, astro-ph/0612641.
[12] Karen L. Harvey,et al. Properties and emergence patterns of bipolar active regions , 1993 .
[13] M. Georgoulis,et al. Extended instability criteria in isotropic and anisotropic energy avalanches , 1995 .
[14] H. Isliker,et al. Astronomy & Astrophysics Hi 21 Cm Absorption in Low Z Damped Lyman-α Systems , 2001 .
[15] Manolis K. Georgoulis,et al. A New Technique for a Routine Azimuth Disambiguation of Solar Vector Magnetograms , 2005 .
[16] M. Velli,et al. Energy Release in a Turbulent Corona , 1996 .
[17] Loukas Vlahos,et al. Derivation of Solar Flare Cellular Automata Models from a Subset of the Magnetohydrodynamic Equations , 1998 .
[18] Tang,et al. Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .
[19] T. Treu,et al. The Internal Structure and Formation of Early-Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004 , 2002, astro-ph/0202342.
[20] G. Hornig,et al. On the nature of three‐dimensional magnetic reconnection , 2003 .
[21] Carolus J. Schrijver,et al. A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953 , 2009, 0902.1007.
[22] M. Dimitropoulou,et al. The correlation of fractal structures in the photospheric and the coronal magnetic field , 2009, 0908.3950.
[23] Manolis K. Georgoulis,et al. A comparison between statistical properties of solar X-ray flares and avalanche predictions in cellular automata statistical flare models , 2001 .
[24] T. Wiegelmann. Optimization code with weighting function for the reconstruction of coronal magnetic fields , 2008, 0802.0124.
[25] Michael S. Wheatland,et al. An Optimization Approach to Reconstructing Force-free Fields , 1997 .
[26] E. Priest,et al. Nonlinear force-free models for the solar corona I. Two active regions with very different structure , 2007, astro-ph/0703756.
[27] J. McTiernan,et al. Statistical Studies of ISEE 3/ICE Observations of Impulsive Hard X-Ray Solar Flares , 1995 .
[28] E. Parker. Nanoflares and the solar X-ray corona , 1988 .
[29] H. Hudson,et al. OSO-7 observations of solar x-rays in the energy range 10–100 keV , 1974 .
[30] H. Isliker,et al. PARTICLE ACCELERATION IN AN EVOLVING NETWORK OF UNSTABLE CURRENT SHEETS , 2004 .
[31] R. Canfield,et al. The imaging vector magnetograph at Haleakala , 1996 .
[32] E. Lu,et al. Avalanches and the Distribution of Solar Flares , 1991 .
[33] T. Wiegelmann,et al. Nonlinear force‐free modeling of the solar coronal magnetic field , 2008, 0801.2902.