Photophysical properties of a new, stable corrole-porphyrin dyad

[1]  D. Gryko,et al.  Electrochemistry and spectroelectrochemistry of meso-substituted free-base corroles in nonaqueous media: reactions of (Cor)H3, [(Cor)H4]+, and [(Cor)H2]-. , 2006, Inorganic chemistry.

[2]  P. Harvey,et al.  Photophysical Properties of a Rhodium Tetraphenylporphyrin-tin Corrole Dyad. The First Example of a Through Metal–Metal Bond Energy Transfer† , 2006, Photochemistry and photobiology.

[3]  D. Gryko,et al.  Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation , 2005 .

[4]  T. Moore,et al.  Artificial photosynthetic reaction centers: mimicking sequential electron and triplet-energy transfer. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  R. Paolesse,et al.  Novel Aspects of Corrole Chemistry , 2005 .

[6]  K. Kadish,et al.  Electrochemistry, spectroelectrochemistry, chloride binding, and O2 catalytic reactions of free-base porphyrin-cobalt corrole dyads. , 2005, Inorganic chemistry.

[7]  D. Modarelli,et al.  Photophysical properties of a series of free-base corroles. , 2005, The journal of physical chemistry. A.

[8]  K. Kadish,et al.  Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. , 2005, Journal of the American Chemical Society.

[9]  D. Gryko,et al.  Simple approach to "locked" chlorins. , 2005, Organic letters.

[10]  Z. Gross,et al.  Gallium(III) Corroles , 2005 .

[11]  Y. Kobuke,et al.  Dynamic Supramolecular Porphyrin Systems , 2005 .

[12]  D. Gryko,et al.  Recent advances in the chemistry of corroles and core-modified corroles , 2004 .

[13]  D. Gryko,et al.  Refined Synthesis of meso-Substituted trans-A2B-Corroles Bearing Electron-Withdrawing Groups , 2004 .

[14]  Christoph Rosenbohm,et al.  Dry Column Vacuum Chromatography , 2004 .

[15]  Y. Hashimoto,et al.  N-phenylphthalimide-type cyclooxygenase (COX) inhibitors derived from thalidomide: substituent effects on subtype selectivity. , 2004, Chemical & pharmaceutical bulletin.

[16]  H. Imahori,et al.  Porphyrin-fullerene linked systems as artificial photosynthetic mimics. , 2004, Organic & biomolecular chemistry.

[17]  Abhik Ghosh A perspective of one-pot pyrrole-aldehyde condensations as versatile self-assembly processes. , 2004, Angewandte Chemie.

[18]  B. Patel,et al.  Chemoselective Acylation of Amines in Aqueous Media , 2004 .

[19]  J. Lindsey,et al.  A Scalable Synthesis of Meso-Substituted Dipyrromethanes , 2003 .

[20]  J. Lindsey,et al.  Investigation of acid cocatalysis in syntheses of tetraphenylporphyrin , 2001 .

[21]  Kevin M. Smith,et al.  Photophysical Behaviour of Corrole and its Symmetrical and Unsymmetrical Dyads , 1999 .

[22]  Z. Gross,et al.  The First Direct Synthesis of Corroles from Pyrrole. , 1999, Angewandte Chemie.

[23]  Martina Huber,et al.  Model Reactions for Photosynthesis—Photoinduced Charge and Energy Transfer between Covalently Linked Porphyrin and Quinone Units , 1995 .

[24]  T. Moore,et al.  Photoinduced electron and energy transfer in molecular pentads , 1993 .

[25]  L. Flamigni Inclusion of fluorescein and halogenated derivatives in .alpha.-, .beta.-, and .gamma.-cyclodextrins: a steady-state and picosecond time-resolved study , 1993 .

[26]  Thomas A. Moore,et al.  Molecular mimicry of photosynthetic energy and electron transfer , 1993 .

[27]  M. Wasielewski Photoinduced electron transfer in supramolecular systems for artificial photosynthesis , 1992 .

[28]  T. Nagata Synthesis and Fluorescence Properties of Selectively Metallated Diporphyrins with Electron-Accepting Moieties , 1991 .

[29]  T. Moore,et al.  Photodriven charge separation in a carotenoporphyrin–quinone triad , 1984, Nature.

[30]  I. Yamazaki,et al.  Bioinspired molecular design of light-harvesting multiporphyrin arrays. , 2004, Angewandte Chemie.

[31]  Kevin M. Smith,et al.  Novel routes to substituted 5,10,15-triarylcorroles , 2003 .

[32]  Dewey Holten,et al.  Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. , 2002, Accounts of chemical research.

[33]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[34]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[35]  D. Gryko A simple, rational synthesis of meso-substituted A2B-corroles , 2000 .

[36]  K. Tomizaki,et al.  Chiral assembly of a pair of free base porphyrins and peroxidase-like activity of iron(III) porphyrins in four-α-helix bundle structures with dimerized two-α-helix polypeptides , 2000 .

[37]  Kevin M. Smith,et al.  5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction , 1999 .

[38]  Takashi Hayashi,et al.  Molecular modelling of electron transfer systems by noncovalently linked porphyrin–acceptor pairing , 1997 .

[39]  A. Harriman,et al.  A strategy for constructing photosynthetic models: porphyrin-containing modules assembled around transition metals , 1996 .

[40]  L. Makings,et al.  Long-lived photoinitiated charge separation in carotene-diporphyrin triad molecules , 1991 .

[41]  Y. Hashimoto,et al.  Synthesis of porphyrin(Fe)-intercalators which cause DNA scission , 1983 .

[42]  A. Karim,et al.  Metal ions and complexes in organic reactions. Part XV. Copper-catalysed substitutions of aryl halides by phthalimide ion , 1973 .

[43]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[44]  P. Seybold,et al.  Porphyrins. XIII: Fluorescence spectra and quantum yields , 1969 .

[45]  L. Syper Partial oxidation of aliphatic side chains with cerium (IV) , 1966 .

[46]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .